Skip to content

Commit

Permalink
[ROCm] Update whisper benchmark script (#17391)
Browse files Browse the repository at this point in the history
- update whisper benchmark for ROCm EP.
  • Loading branch information
PeixuanZuo authored and tianleiwu committed Oct 31, 2023
1 parent c4ba739 commit b181a43
Show file tree
Hide file tree
Showing 3 changed files with 198 additions and 91 deletions.
172 changes: 117 additions & 55 deletions onnxruntime/python/tools/transformers/benchmark_helper.py
Original file line number Diff line number Diff line change
Expand Up @@ -8,7 +8,10 @@
import logging
import os
import random
import sys
import time
import timeit
from abc import ABC, abstractmethod
from concurrent.futures import ThreadPoolExecutor
from datetime import datetime
from enum import Enum
Expand Down Expand Up @@ -439,76 +442,135 @@ def get_gpu_info() -> Optional[List[Dict[str, Any]]]:
return None


def measure_memory(is_gpu, func):
class MemoryMonitor:
def __init__(self, keep_measuring=True):
self.keep_measuring = keep_measuring
class MemoryMonitor(ABC):
def __init__(self, keep_measuring=True):
self.keep_measuring = keep_measuring

def measure_cpu_usage(self):
import psutil
def measure_cpu_usage(self):
import psutil

max_usage = 0
max_usage = 0
while True:
max_usage = max(max_usage, psutil.Process(os.getpid()).memory_info().rss / 1024**2)
sleep(0.005) # 5ms
if not self.keep_measuring:
break
return max_usage

@abstractmethod
def measure_gpu_usage(self) -> Optional[List[Dict[str, Any]]]:
raise NotImplementedError()


class CudaMemoryMonitor(MemoryMonitor):
def __init__(self, keep_measuring=True):
super().__init__(keep_measuring)

def measure_gpu_usage(self) -> Optional[List[Dict[str, Any]]]:
from py3nvml.py3nvml import (
NVMLError,
nvmlDeviceGetCount,
nvmlDeviceGetHandleByIndex,
nvmlDeviceGetMemoryInfo,
nvmlDeviceGetName,
nvmlInit,
nvmlShutdown,
)

max_gpu_usage = []
gpu_name = []
try:
nvmlInit()
device_count = nvmlDeviceGetCount()
if not isinstance(device_count, int):
logger.error(f"nvmlDeviceGetCount result is not integer: {device_count}")
return None

max_gpu_usage = [0 for i in range(device_count)]
gpu_name = [nvmlDeviceGetName(nvmlDeviceGetHandleByIndex(i)) for i in range(device_count)]
while True:
max_usage = max(max_usage, psutil.Process(os.getpid()).memory_info().rss / 1024**2)
for i in range(device_count):
info = nvmlDeviceGetMemoryInfo(nvmlDeviceGetHandleByIndex(i))
if isinstance(info, str):
logger.error(f"nvmlDeviceGetMemoryInfo returns str: {info}")
return None
max_gpu_usage[i] = max(max_gpu_usage[i], info.used / 1024**2)
sleep(0.005) # 5ms
if not self.keep_measuring:
break
return max_usage

def measure_gpu_usage(self) -> Optional[List[Dict[str, Any]]]:
from py3nvml.py3nvml import (
NVMLError,
nvmlDeviceGetCount,
nvmlDeviceGetHandleByIndex,
nvmlDeviceGetMemoryInfo,
nvmlDeviceGetName,
nvmlInit,
nvmlShutdown,
)
nvmlShutdown()
return [
{
"device_id": i,
"name": gpu_name[i],
"max_used_MB": max_gpu_usage[i],
}
for i in range(device_count)
]
except NVMLError as error:
logger.error("Error fetching GPU information using nvml: %s", error)
return None

max_gpu_usage = []
gpu_name = []
try:
nvmlInit()
device_count = nvmlDeviceGetCount()
if not isinstance(device_count, int):
logger.error(f"nvmlDeviceGetCount result is not integer: {device_count}")
return None

max_gpu_usage = [0 for i in range(device_count)]
gpu_name = [nvmlDeviceGetName(nvmlDeviceGetHandleByIndex(i)) for i in range(device_count)]
while True:
for i in range(device_count):
info = nvmlDeviceGetMemoryInfo(nvmlDeviceGetHandleByIndex(i))
if isinstance(info, str):
logger.error(f"nvmlDeviceGetMemoryInfo returns str: {info}")
return None
max_gpu_usage[i] = max(max_gpu_usage[i], info.used / 1024**2)
sleep(0.005) # 5ms
if not self.keep_measuring:
break
nvmlShutdown()
return [
{
"device_id": i,
"name": gpu_name[i],
"max_used_MB": max_gpu_usage[i],
}
for i in range(device_count)
]
except NVMLError as error:
logger.error("Error fetching GPU information using nvml: %s", error)
return None

monitor = MemoryMonitor(False)
class RocmMemoryMonitor(MemoryMonitor):
def __init__(self, keep_measuring=True):
super().__init__(keep_measuring)
rocm_smi_path = "/opt/rocm/libexec/rocm_smi"
if os.path.exists(rocm_smi_path):
if rocm_smi_path not in sys.path:
sys.path.append(rocm_smi_path)
try:
import rocm_smi

self.rocm_smi = rocm_smi
self.rocm_smi.initializeRsmi()
except ImportError:
self.rocm_smi = None

def get_used_memory(self, dev):
if self.rocm_smi is None:
return -1
return self.rocm_smi.getMemInfo(dev, "VRAM")[0] / 1024 / 1024

def measure_gpu_usage(self):
if self.rocm_smi is None:
return None

device_count = len(self.rocm_smi.listDevices()) if self.rocm_smi is not None else 0
max_gpu_usage = [0 for i in range(device_count)]
gpu_name = [f"GPU{i}" for i in range(device_count)]
while True:
for i in range(device_count):
max_gpu_usage[i] = max(max_gpu_usage[i], self.get_used_memory(i))
time.sleep(0.005) # 2ms
if not self.keep_measuring:
break
return [
{
"device_id": i,
"name": gpu_name[i],
"max_used_MB": max_gpu_usage[i],
}
for i in range(device_count)
]


def measure_memory(is_gpu, func, monitor_type="cuda"):
memory_monitor_type = None
if monitor_type == "rocm":
memory_monitor_type = RocmMemoryMonitor
else:
memory_monitor_type = CudaMemoryMonitor

monitor = memory_monitor_type(False)

if is_gpu:
memory_before_test = monitor.measure_gpu_usage()
if memory_before_test is None:
return None

with ThreadPoolExecutor() as executor:
monitor = MemoryMonitor()
monitor = memory_monitor_type()
mem_thread = executor.submit(monitor.measure_gpu_usage)
try:
fn_thread = executor.submit(func)
Expand Down
60 changes: 49 additions & 11 deletions onnxruntime/python/tools/transformers/models/whisper/benchmark.py
Original file line number Diff line number Diff line change
Expand Up @@ -11,15 +11,14 @@
import psutil
import torch
import whisper
from benchmark_helper import setup_logger
from benchmark_helper import measure_memory, setup_logger
from onnxruntime_extensions import get_library_path
from optimum.onnxruntime import ORTModelForSpeechSeq2Seq
from torch.profiler import ProfilerActivity, profile, record_function
from tqdm import trange
from transformers import AutoModelForSpeechSeq2Seq, WhisperConfig, WhisperProcessor

import onnxruntime as ort
from onnxruntime.transformers.benchmark_helper import measure_memory

logger = logging.getLogger(__name__)

Expand Down Expand Up @@ -123,6 +122,9 @@ def get_model(args: argparse.Namespace):
if args.verbose:
sess_options.log_verbosity_level = 1
sess_options.log_severity_level = 1
if args.tune:
ort.set_default_logger_severity(0)
ort.set_default_logger_verbosity(0)

else:
raise Exception(f"Cannot recognize {args.benchmark_type}")
Expand Down Expand Up @@ -159,6 +161,9 @@ def get_model(args: argparse.Namespace):


def time_fn(args, fn, inputs):
warmup_inputs = inputs[0] if type(inputs) is tuple else inputs
benchmark_inputs = inputs[1] if type(inputs) is tuple else inputs

# Warm up
warmup_range = (
range(args.warmup_runs)
Expand All @@ -167,11 +172,11 @@ def time_fn(args, fn, inputs):
)

if args.verbose:
outputs = fn(inputs)
outputs = fn(warmup_inputs)
logger.info(outputs)

for _ in warmup_range:
fn(inputs)
fn(warmup_inputs)

# Benchmark
if args.device != "cpu":
Expand All @@ -184,7 +189,7 @@ def time_fn(args, fn, inputs):
else trange(args.num_runs, file=sys.stdout, desc="Benchmark")
)
for _ in bench_range:
fn(inputs)
fn(benchmark_inputs)

if args.device != "cpu":
torch.cuda.synchronize()
Expand Down Expand Up @@ -244,7 +249,7 @@ def measure_fn(args, fn, inputs):
# Measure memory usage
gc.collect()
torch.cuda.empty_cache()
measure_memory(is_gpu=(args.device != "cpu"), func=lambda: fn(inputs))
measure_memory(is_gpu=(args.device != "cpu"), func=lambda: fn(inputs), monitor_type=args.monitor_type)

# Flush output so memory usage is printed
sys.stdout.flush()
Expand All @@ -255,7 +260,7 @@ def run_hf_inference(args, inputs, model):
def get_pred_ids(inputs):
# Inference pass with predicted token ids generation
predicted_ids = model.generate(**inputs)
return predicted_ids, [""]
return predicted_ids

def gen_and_dec(inputs):
# Inference pass with generation and decoding
Expand Down Expand Up @@ -315,7 +320,7 @@ def gen_and_dec(inputs):


def run_ort_inference(args, inputs, model):
def prepare_ort_inputs(inputs):
def prepare_ort_inputs(inputs, warmup=False):
# Check that all model inputs will be provided
model_inputs = set(map(lambda model_input: model_input.name, model.get_inputs()))
user_inputs = set(inputs.keys())
Expand All @@ -324,6 +329,9 @@ def prepare_ort_inputs(inputs):
logger.error(f"The following model inputs are missing: {missing_inputs}")
raise Exception("There are missing inputs to the model. Please add them and try again.")

if warmup and args.tune:
inputs["min_length"] = inputs["max_length"]

# Remove unnecessary inputs from model inputs
unnecessary_inputs = user_inputs - model_inputs
if len(unnecessary_inputs):
Expand Down Expand Up @@ -352,6 +360,13 @@ def without_io_binding(inputs):
outputs = model.run(None, inputs)
return outputs

def handle_output(output):
if args.eos_token_id in output:
first_end = np.where(output == args.eos_token_id)[0][0]
return output[: first_end + 1]

return output

generate_fn = with_io_binding if args.device != "cpu" else without_io_binding
ort_inputs = prepare_ort_inputs(inputs)

Expand All @@ -367,7 +382,12 @@ def without_io_binding(inputs):

# ORT evaluation
logger.info("\nEvaluating ONNX Runtime...")
time_fn(args, generate_fn, ort_inputs)
ort_evaluate_inputs = ort_inputs
if args.tune:
ort_warmup_inputs = prepare_ort_inputs(inputs, warmup=True)
ort_evaluate_inputs = (ort_warmup_inputs, ort_inputs)

time_fn(args, generate_fn, ort_evaluate_inputs)
ort_outputs = generate_fn(ort_inputs)
if args.device != "cpu":
ort_outputs = ort_outputs.copy_outputs_to_cpu()
Expand All @@ -378,7 +398,10 @@ def without_io_binding(inputs):
logger.info(f"Transcription: {ort_outputs[0][0]}")
else:
# convert_to_onnx model produces generated ids
logger.info(f"Generated token length: {len(ort_outputs[0][0])} tokens")
actual_output = handle_output(ort_outputs[0][0])
logger.info(f"Generated token length: {len(actual_output)} tokens")
transcription = args.processor.batch_decode(ort_outputs[0], skip_special_tokens=True)[0]
logger.info(f"Transcription: {transcription}")

measure_fn(args, generate_fn, ort_inputs)

Expand Down Expand Up @@ -483,20 +506,34 @@ def parse_args():
parser.add_argument("--pt-num-rows", type=int, default=1000, help="Number of rows for PyTorch profiler to display")
parser.add_argument("--verbose", default=False, action="store_true")
parser.add_argument("--log-folder", type=str, default=os.path.join("."), help="Folder to cache log files")
parser.add_argument(
"--tune",
default=False,
action="store_true",
help="Only used by ROCm EP, enable TunableOp tuning to select fastest kernel",
)

args = parser.parse_args()

# Set seed properties
np.random.seed(args.seed)
torch.manual_seed(args.seed)

args.monitor_type = args.device
# Set runtime properties
if "ort" in args.benchmark_type:
args.execution_provider = f"{args.device.upper()}ExecutionProvider"
if args.execution_provider == "CUDAExecutionProvider":
args.execution_provider = (args.execution_provider, {"device_id": args.device_id})
elif args.execution_provider == "ROCMExecutionProvider":
args.execution_provider = (args.execution_provider, {"device_id": args.device_id})
args.execution_provider = (
args.execution_provider,
{
"device_id": args.device_id,
"tunable_op_enable": 1,
"tunable_op_tuning_enable": 1 if args.tune else 0,
},
)
args.device = "cuda"

# Check that model paths have been specified for any benchmarking with ORT
Expand Down Expand Up @@ -527,6 +564,7 @@ def main():
setattr(args, "target_device", target_device) # noqa: B010
setattr(args, "use_fp16", use_fp16) # noqa: B010
setattr(args, "has_audio_stream", False) # noqa: B010
setattr(args, "eos_token_id", config.eos_token_id) # noqa: B010

logger.info(f"Forced decoder prompt ids: {args.decoder_input_ids}")

Expand Down
Loading

0 comments on commit b181a43

Please sign in to comment.