Skip to content

Commit

Permalink
[CoreML ] ML Program more operators support [3/N] (#22710)
Browse files Browse the repository at this point in the history
### Description
- Erf
- Round
- Max
- ReduceMax
- ReduceMean
- ReduceSum
- Unsqueeze
- Squeeze
- Softmax



### Motivation and Context
<!-- - Why is this change required? What problem does it solve?
- If it fixes an open issue, please link to the issue here. -->

---------

Co-authored-by: Scott McKay <[email protected]>
Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
  • Loading branch information
3 people authored Nov 28, 2024
1 parent b930b4a commit a24723d
Show file tree
Hide file tree
Showing 15 changed files with 521 additions and 160 deletions.
24 changes: 10 additions & 14 deletions onnxruntime/core/providers/coreml/builders/impl/base_op_builder.cc
Original file line number Diff line number Diff line change
Expand Up @@ -13,14 +13,6 @@ using namespace CoreML::Specification;
namespace onnxruntime {
namespace coreml {

// Once all ops are supportted FP16, we can remove it. Before that, we keep a set of ops to
// filter suppported ones.
static std::set<std::string> Float16Ops = {
"Add", "ArgMax", "AveragePool", "BatchNormalization", "Cast", "Clip", "Concat", "Conv", "ConvTranspose",
"DepthToSpace", "Div", "Gelu", "Gemm", "GlobalAveragePool", "GlobalMaxPool", "GridSample", "GroupNormalization",
"InstanceNormalization", "LayerNormalization", "LeakyRelu", "MatMul", "MaxPool", "Mul", "PRelu", "Pow",
"Reciprocal", "Relu", "Reshape", "Resize", "Sigmoid", "Slice", "Split", "Sqrt", "Sub", "Tanh", "Transpose"};

namespace {
// TODO, move this to shared_library
bool HasExternalInitializer(const InitializedTensorSet& initializers, const Node& node,
Expand Down Expand Up @@ -64,20 +56,27 @@ bool BaseOpBuilder::IsOpSupported(const Node& node, const OpBuilderInputParams&
}

if (!HasSupportedOpSet(node, logger)) {
LOGS(logger, VERBOSE) << "Operator [" << node.OpType() << "] does not support this opset";
return false;
}

if (!HasSupportedInputs(node, input_params, logger)) {
LOGS(logger, VERBOSE) << "Operator [" << node.OpType() << "] has unsupported inputs";
return false;
}

// We do not support external initializers for now
const auto& initializers = input_params.graph_viewer.GetAllInitializedTensors();
if (HasExternalInitializer(initializers, node, logger)) {
LOGS(logger, VERBOSE) << "Operator [" << node.OpType() << "] has external initializers";
return false;
}

return IsOpSupportedImpl(node, input_params, logger);
if (!IsOpSupportedImpl(node, input_params, logger)) {
LOGS(logger, VERBOSE) << "Operator [" << node.OpType() << "] is not supported by the impl";
return false;
}
return true;
}

bool BaseOpBuilder::HasSupportedInputs(const Node& node, const OpBuilderInputParams& input_params,
Expand Down Expand Up @@ -114,13 +113,10 @@ bool BaseOpBuilder::IsInputDtypeSupport(const Node& node, size_t idx,
return true;
}

// only support MLProgram for FP16
#if defined(COREML_ENABLE_MLPROGRAM)
if (input_params.create_mlprogram && input_type == ONNX_NAMESPACE::TensorProto_DataType_FLOAT16 &&
Float16Ops.count(node.OpType())) {
// only MLProgram support FP16
if (input_params.create_mlprogram && input_type == ONNX_NAMESPACE::TensorProto_DataType_FLOAT16) {
return true;
}
#endif

LOGS(logger, VERBOSE) << "[" << node.OpType() << "] Input type: [" << input_type << "] is not currently supported";
return false;
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -6,6 +6,7 @@
#include "core/providers/coreml/builders/helper.h"
#include "core/providers/coreml/builders/impl/base_op_builder.h"
#include "core/providers/coreml/builders/impl/builder_utils.h"
#include "core/providers/coreml/shape_utils.h"
#include "core/providers/coreml/builders/model_builder.h"
#include "core/providers/coreml/builders/op_builder_factory.h"
#include "core/providers/shared/utils/utils.h"
Expand Down Expand Up @@ -55,6 +56,64 @@ bool CheckIfBothInputShapesMatch(const Node& node, const logging::Logger& logger
}
} // namespace

#if defined(COREML_ENABLE_MLPROGRAM)
static std::vector<int64_t> InferOutputShape(const std::vector<int64_t>& a, const std::vector<int64_t>& b) {
std::vector<int64_t> output_shape;
int64_t i_a = 0, j_b = 0;
if (a.size() >= b.size()) {
output_shape = a;
j_b -= a.size() - b.size();
} else {
output_shape = b;
i_a -= b.size() - a.size();
}

for (size_t i = 0; i < output_shape.size(); i++, i_a++, j_b++) {
const int64_t a_dim = (i_a >= 0) ? a[i_a] : 1;
const int64_t b_dim = (j_b >= 0) ? b[j_b] : 1;
if (a_dim == -1 || b_dim == -1) {
output_shape[i] = -1;
} else {
output_shape[i] = std::max(a_dim, b_dim);
}
}
return output_shape;
}

// Add variadic inputs to the model builder
// in onnx spec, some node allows variadic inputs, such as max(x, y, z, ...)
// while in coreml, maximum op only allows two inputs maximum(x, y)
// the conversion is doing the following:
// max(x, y, z, ...) -> max(max(x, y), z, ...)
static void AddVariadicInputs(std::unique_ptr<CoreML::Specification::MILSpec::Operation>* op,
ModelBuilder& model_builder,
const Node& node,
const logging::Logger& logger) {
using namespace CoreML::Specification::MILSpec;
const auto& input_defs(node.InputDefs());
std::string_view layer_input_name_x = model_builder.GetUniqueName(node, "variadic");
auto input_dtype = input_defs[0]->TypeAsProto()->tensor_type().elem_type();
const int32_t elem_type = static_cast<int32_t>(input_dtype);
std::vector<int64_t> x0_shape, x1_shape;
GetShape(*input_defs[0], x0_shape, logger);
GetShape(*input_defs[1], x1_shape, logger);
x0_shape = InferOutputShape(x0_shape, x1_shape);
std::unique_ptr<Operation> op_prev = std::move(*op);
for (size_t i = 2; i < input_defs.size(); i++) {
AddIntermediateOperationOutput(*op_prev, layer_input_name_x, elem_type, x0_shape);
std::unique_ptr<Operation> op_cur = model_builder.CreateOperation(node, op_prev->type());
AddOperationInput(*op_cur, "x", layer_input_name_x);
AddOperationInput(*op_cur, "y", input_defs[i]->Name());
model_builder.AddOperation(std::move(op_prev));
op_prev = std::move(op_cur);
layer_input_name_x = model_builder.GetUniqueName(node, "variadic");
GetShape(*input_defs[i], x1_shape, logger);
x0_shape = InferOutputShape(x0_shape, x1_shape);
}
*op = std::move(op_prev);
}
#endif

Status BinaryOpBuilder::AddToModelBuilderImpl(ModelBuilder& model_builder, const Node& node,
const logging::Logger& logger) const {
const auto& op_type(node.OpType());
Expand All @@ -70,6 +129,8 @@ Status BinaryOpBuilder::AddToModelBuilderImpl(ModelBuilder& model_builder, const
coreml_op_type = "add";
} else if (op_type == "Mul") {
coreml_op_type = "mul";
} else if (op_type == "Max") {
coreml_op_type = "maximum";
} else if (op_type == "Sub") {
coreml_op_type = "sub";
} else if (op_type == "Div") {
Expand All @@ -86,8 +147,11 @@ Status BinaryOpBuilder::AddToModelBuilderImpl(ModelBuilder& model_builder, const
std::unique_ptr<Operation> op = model_builder.CreateOperation(node, coreml_op_type);
AddOperationInput(*op, "x", input_defs[0]->Name());
AddOperationInput(*op, "y", input_defs[1]->Name());
if (input_defs.size() > 2) {
// "max" node may have variadic inputs
AddVariadicInputs(&op, model_builder, node, logger);
}
AddOperationOutput(*op, *node.OutputDefs()[0]);

model_builder.AddOperation(std::move(op));
} else
#endif // defined (COREML_ENABLE_MLPROGRAM)
Expand Down Expand Up @@ -157,6 +221,10 @@ bool BinaryOpBuilder::HasSupportedInputsImpl(const Node& node, const OpBuilderIn
return false;
}

if (node.OpType() == "Max" && !input_params.create_mlprogram) {
return false;
}

return true;
}

Expand Down
30 changes: 15 additions & 15 deletions onnxruntime/core/providers/coreml/builders/impl/clip_op_builder.cc
Original file line number Diff line number Diff line change
Expand Up @@ -98,26 +98,24 @@ Status ClipOpBuilder::AddToModelBuilderImpl(ModelBuilder& model_builder,
const bool min_max_attribs = node.SinceVersion() < 11;
std::string_view min_name;
if (input_dtype == ONNX_NAMESPACE::TensorProto_DataType_FLOAT) {
min_name = min_max_attribs ? model_builder.AddScalarConstant(clip_op.type(), "min", min)
: node.InputDefs()[1]->Name();
min_name = (min_max_attribs || !has_min) ? model_builder.AddScalarConstant(clip_op.type(), "min", min)
: node.InputDefs()[1]->Name();
} else {
min_name = min_max_attribs ? model_builder.AddScalarConstant(clip_op.type(), "min", MLFloat16(min))
: node.InputDefs()[1]->Name();
min_name = (min_max_attribs || !has_min) ? model_builder.AddScalarConstant(clip_op.type(), "min", MLFloat16(min))
: node.InputDefs()[1]->Name();
}

AddOperationInput(clip_op, "alpha", min_name);

if (has_max) {
std::string_view max_name;
if (input_dtype == ONNX_NAMESPACE::TensorProto_DataType_FLOAT) {
max_name = min_max_attribs ? model_builder.AddScalarConstant(clip_op.type(), "max", max)
: node.InputDefs()[2]->Name();
} else {
max_name = min_max_attribs ? model_builder.AddScalarConstant(clip_op.type(), "max", MLFloat16(max))
: node.InputDefs()[2]->Name();
}
AddOperationInput(clip_op, "beta", max_name);
std::string_view max_name;
if (input_dtype == ONNX_NAMESPACE::TensorProto_DataType_FLOAT) {
max_name = (min_max_attribs || !has_max) ? model_builder.AddScalarConstant(clip_op.type(), "max", max)
: node.InputDefs()[2]->Name();
} else {
max_name = (min_max_attribs || !has_max) ? model_builder.AddScalarConstant(clip_op.type(), "max", MLFloat16(max))
: node.InputDefs()[2]->Name();
}
AddOperationInput(clip_op, "beta", max_name);
}
}

Expand Down Expand Up @@ -200,7 +198,9 @@ Status ClipOpBuilder::AddToModelBuilderImpl(ModelBuilder& model_builder,
bool ClipOpBuilder::IsOpSupportedImpl(const Node& node, const OpBuilderInputParams& input_params,
const logging::Logger& logger) const {
float min, max;
return GetClipMinMax(input_params.graph_viewer, node, min, max, logger);
bool ret = GetClipMinMax(input_params.graph_viewer, node, min, max, logger);
// what does it mean if min == max?
return ret && (min != max);
}

void CreateClipOpBuilder(const std::string& op_type, OpBuilderRegistrations& op_registrations) {
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -5,10 +5,15 @@
#include "core/providers/common.h"
#include "core/providers/coreml/builders/helper.h"
#include "core/providers/coreml/builders/impl/base_op_builder.h"
#include "core/providers/coreml/builders/impl/builder_utils.h"
#include "core/providers/coreml/builders/model_builder.h"
#include "core/providers/coreml/builders/op_builder_factory.h"
#include "core/providers/shared/utils/utils.h"

#ifdef __APPLE__
#include <TargetConditionals.h>
#endif

namespace onnxruntime {
namespace coreml {

Expand All @@ -20,6 +25,7 @@ class ReductionOpBuilder : public BaseOpBuilder {

bool IsOpSupportedImpl(const Node& node, const OpBuilderInputParams& input_params,
const logging::Logger& logger) const override;
bool SupportsMLProgram() const override { return true; }
};

namespace {
Expand Down Expand Up @@ -48,13 +54,12 @@ Status ReductionOpBuilder::AddToModelBuilderImpl(ModelBuilder& model_builder, co
const logging::Logger& /* logger */) const {
const auto& op_type(node.OpType());
const auto& input_defs(node.InputDefs());
const auto& initializers(model_builder.GetInitializerTensors());

std::vector<int64_t> axes;

NodeAttrHelper helper(node);
if (input_defs.size() > 1 && input_defs[1]->Exists()) {
auto& axes_tensor = *initializers.at(input_defs[1]->Name());
auto& axes_tensor = *model_builder.GetConstantInitializer(input_defs[1]->Name());
Initializer axes_initializer(axes_tensor);
int64_t* data = axes_initializer.data<int64_t>();
int64_t size = axes_initializer.size();
Expand All @@ -66,28 +71,77 @@ Status ReductionOpBuilder::AddToModelBuilderImpl(ModelBuilder& model_builder, co

const bool keepdims = helper.Get("keepdims", 1) != 0;
const bool noop_with_empty_axes = helper.Get("noop_with_empty_axes", 0) != 0;
#if defined(COREML_ENABLE_MLPROGRAM)
if (model_builder.CreateMLProgram()) {
using namespace CoreML::Specification::MILSpec;

std::string_view coreml_op_type;
if (noop_with_empty_axes && axes.size() == 0) {
coreml_op_type = "identity";
} else if (op_type == "ReduceSum") {
coreml_op_type = "reduce_sum";
} else if (op_type == "ReduceMean") {
coreml_op_type = "reduce_mean";
} else if (op_type == "ReduceMax") {
coreml_op_type = "reduce_max";
} else if (op_type == "ReduceMin") {
coreml_op_type = "reduce_min";
} else if (op_type == "ReduceProd") {
coreml_op_type = "reduce_prod";
} else {
return ORT_MAKE_STATUS(ONNXRUNTIME, INVALID_ARGUMENT,
"ReductionOpBuilder::AddToModelBuilderImpl, unexpected op: ", op_type);
}
std::unique_ptr<Operation> op = model_builder.CreateOperation(node, coreml_op_type);
AddOperationInput(*op, "x", input_defs[0]->Name());
if (coreml_op_type != "identity") {
if (axes.size() > 0) {
AddOperationInput(*op, "axes", model_builder.AddConstant(op->type(), "axes", axes));
}
AddOperationInput(*op, "keep_dims", model_builder.AddScalarConstant(op->type(), "keep_dims", keepdims));
}
AddOperationOutput(*op, *node.OutputDefs()[0]);

model_builder.AddOperation(std::move(op));
} else
#endif // (COREML_ENABLE_MLPROGRAM)
{
std::unique_ptr<COREML_SPEC::NeuralNetworkLayer> layer = model_builder.CreateNNLayer(node);

if (op_type == "ReduceSum") {
AddReductionParams(layer->mutable_reducesum(), axes, keepdims, noop_with_empty_axes);
} else if (op_type == "ReduceMean") {
AddReductionParams(layer->mutable_reducemean(), axes, keepdims, noop_with_empty_axes);
} else {
return ORT_MAKE_STATUS(ONNXRUNTIME, INVALID_ARGUMENT,
"ReductionOpBuilder::AddToModelBuilderImpl, unknown op: ", op_type);
}

std::unique_ptr<COREML_SPEC::NeuralNetworkLayer> layer = model_builder.CreateNNLayer(node);
*layer->mutable_input()->Add() = node.InputDefs()[0]->Name();
*layer->mutable_output()->Add() = node.OutputDefs()[0]->Name();

if (op_type == "ReduceSum") {
AddReductionParams(layer->mutable_reducesum(), axes, keepdims, noop_with_empty_axes);
} else if (op_type == "ReduceMean") {
AddReductionParams(layer->mutable_reducemean(), axes, keepdims, noop_with_empty_axes);
} else {
return ORT_MAKE_STATUS(ONNXRUNTIME, INVALID_ARGUMENT,
"ReductionOpBuilder::AddToModelBuilderImpl, unknown op: ", op_type);
model_builder.AddLayer(std::move(layer));
}

*layer->mutable_input()->Add() = node.InputDefs()[0]->Name();
*layer->mutable_output()->Add() = node.OutputDefs()[0]->Name();

model_builder.AddLayer(std::move(layer));
return Status::OK();
}

bool ReductionOpBuilder::IsOpSupportedImpl(const Node& node, const OpBuilderInputParams& input_params,
const logging::Logger& logger) const {
const auto& input_defs = node.InputDefs();
if (!input_params.create_mlprogram &&
(node.OpType() == "ReduceMax" || node.OpType() == "ReduceMin" || node.OpType() == "ReduceProd")) {
return false;
}

#if defined(TARGET_OS_IOS) && defined(TARGET_CPU_X86_64)
// to pass https://dev.azure.com/onnxruntime/onnxruntime/_build/results?buildId=1563483&view=logs&j=f7cc61a9-cc70-56e7-b06c-4668ca17e426
// ReductionOpTest.ReduceSum_half_bert
int32_t input_type;
GetType(*input_defs[0], input_type, logger);
if (node.OpType() == "ReduceSum" && input_type == ONNX_NAMESPACE::TensorProto_DataType_FLOAT16) {
return false;
}
#endif

NodeAttrHelper helper(node);

Expand All @@ -99,18 +153,16 @@ bool ReductionOpBuilder::IsOpSupportedImpl(const Node& node, const OpBuilderInpu
if (input_defs.size() > 1 && input_defs[1]->Exists()) {
// 'axes' is optional input in new opsets
const auto& axes_name = input_defs[1]->Name();
const auto& initializers = input_params.graph_viewer.GetAllInitializedTensors();
if (!Contains(initializers, axes_name)) {
const auto* axes = input_params.graph_viewer.GetConstantInitializer(axes_name);
if (!axes) {
LOGS(logger, VERBOSE) << "Axes of reduction must be a constant initializer";
return false;
}

empty_axes = initializers.at(axes_name)->int64_data_size() == 0;
empty_axes = axes->int64_data_size() == 0;
}

if (empty_axes && noop_with_empty_axes) {
// TODO: When we add ML Program support we should enable this as it makes the node an Identity op
LOGS(logger, VERBOSE) << "CoreML doesn't support noop on empty axes for reduction layers" << std::endl;
if (empty_axes && noop_with_empty_axes && !input_params.create_mlprogram) {
LOGS(logger, VERBOSE) << "NeuralNetwork doesn't support noop on empty axes for reduction layers";
return false;
}

Expand Down
Loading

0 comments on commit a24723d

Please sign in to comment.