Skip to content

Commit

Permalink
blog for ONNX
Browse files Browse the repository at this point in the history
  • Loading branch information
parinitarahi committed May 21, 2024
1 parent 2fe196e commit 7acca7b
Show file tree
Hide file tree
Showing 4 changed files with 131 additions and 4 deletions.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
19 changes: 15 additions & 4 deletions src/routes/blogs/+page.svelte
Original file line number Diff line number Diff line change
Expand Up @@ -16,6 +16,7 @@
import WebGPUImage from '../../images/blogs/webgpu_blog_thumbnail.jpg';
import WebTrainingImage from '../../images/blogs/webtraining_blog_thumbnail.png';
import Phi3OnDeviceImage from '../../images/blogs/phi-3-on-device_blog_thumbnail.png';
import Phi3SmallMediumImage from '../../images/blogs/accelerating-phi-3-medium-thumbnail.png';
onMount(() => {
anime({
targets: '.border-primary',
Expand Down Expand Up @@ -43,6 +44,16 @@
dispatch('switchTab', tab);
}
let featuredblog = [
{
title: 'Phi-3 Small and Medium Models are now Optimized with ONNX Runtime and DirectML',
date: 'May 21th, 2024',
blurb:
"You can now run the Phi-3 medium, small models on device of your choice.",
link: 'blogs/accelerating-phi-3-small-medium',
image: Phi3SmallMediumImage,
imgalt:
'Chart comparing model size (in GB) of ONNX Phi-3-medium between PyTorch and ONNX Runtime'
},
{
title: 'Enjoy the Power of Phi-3 with ONNX Runtime on your device',
date: 'May 20th, 2024',
Expand All @@ -62,7 +73,9 @@
image: Phi3Image,
imgalt:
'Phi-3 + ONNX Runtime with the prompt "Tell me a joke" and Phi-3 answering: "Why don\'t scientists trust atoms?" "Because they make up everything!"'
},
}
];
let blogs = [
{
title: 'ONNX Runtime Web unleashes generative AI in the browser using WebGPU',
date: 'February 29th, 2024',
Expand All @@ -72,9 +85,7 @@
image: WebGPUImage,
imgalt:
'Comparison of ONNX Runtime Web with WebGPU EP on GPU vs. WASM EP on CPU for segment anything example'
}
];
let blogs = [
},
{
title: 'ONNX Runtime 1.17: CUDA 12 support, Phi-2 optimizations, WebGPU, and more!',
date: 'February 28th, 2024',
Expand Down
116 changes: 116 additions & 0 deletions src/routes/blogs/accelerating-phi-3-small-medium/+page.svx
Original file line number Diff line number Diff line change
@@ -0,0 +1,116 @@
---
title: 'Phi-3 Small and Medium Models are now optimized with ONNX Runtime and DirectML'
date: '21st May, 2024'
description: 'Introducing optimized ONNX variants of the new Phi-3 models'
keywords: 'ORT, ONNX Runtime, ONNX, machine learning, deep learning, phi 3, phi-3, phi-3-small, phi-3-medium, phi 3 small, phi 3 medium, phi-3 small, phi-3 medium'
authors:
[
]
authorsLink:
[
]
image: ''
url: 'https://onnxruntime.ai/blogs/accelerating-phi-3-small-medium'
---

# Phi-3 Small and Medium Models are now optimized with ONNX Runtime and DirectML

We previously shared optimization support for [Phi-3 mini](https://onnxruntime.ai/blogs/accelerating-phi-3). We now introduce optimized [ONNX](https://onnx.ai/) variants of the [newly introduced Phi-3 models](https://aka.ms/Phi-3Build2024). The new **Phi-3-Small** and **Phi-3-Medium** outperform language models of the same size as well as those that are much larger. Phi-3-small beats GPT-3.5T across a variety of language, reasoning, coding and math benchmarks. The new models empower developers with a building block for generative AI applications which require strong reasoning, limited compute, and latency bound scenarios.

**Phi-3-Medium** is a 14B parameter language model. It is available in short-(4K) and long-(128K) context variants. You can now find the **Phi-3-medium-4k-instruct-onnx** and **Phi-3-medium-128K-instruct-onnx** optimized models with **ONNX Runtime and DML** on Huggingface! Check the [Phi-3 Collection](https://huggingface.co/collections/microsoft/phi-3-6626e15e9585a200d2d761e3) for the ONNX models.

We also have added support for **Phi-3 Small** models for CUDA capable Nvidia GPUs, other variants coming soon. This includes support for Block Sparse kernel in the newly released [ONNX Runtime 1.18 release](https://github.com/microsoft/onnxruntime/releases/tag/v1.18.0) via in ONNX Runtime generate() API.

**ONNXRuntime 1.18** adds new features like improved 4bit quantization support, improved MultiheadAttention performance on CPU, and ONNX Runtime generate() API enhancements to enable easier and efficient run across devices.


<!-- Phi-3-vision is a 4.2B parameter multimodal model with language and vision capabilities. The optimized variants of the model are now available in ONNX format for windows DML, CUDA, and CPU. The models are available at . The models can be easily run using ONNX Runtime generate() API (see a tutorial [here](https://aka.ms/run-phi3-v-onnx)).
-->
We are also happy to share that the new optimized ONNX Phi-3-mini for web deployment is available now. You can run Phi3-mini-4K entirely in the browser! Please check out the model [here](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct-onnx-web). What’s more, we now have updated the optimized ONNX version for [CPU and mobile](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct-onnx/tree/main/cpu_and_mobile) with even better performance. And don’t miss [this blog](https://onnxruntime.ai/blogs/phi-3-on-device) about how to run Phi-3 on your phone and in the browser.


## How to run Phi-3-Medium with ONNX Runtime

You can utilize the ONNX Runtime generate() API to run these models seamlessly on any hardware. You can see the detailed instructions [here](https://aka.ms/run-phi3-med-onnx). You can also run the [chat app](https://github.com/microsoft/onnxruntime-genai/tree/main/examples/chat_app) locally.

Only one package and model combination is required based on your hardware.

## 3 easy steps to run

- 1. Download the model
- 2. Install the generate() API
- 3. Run the model with [phi3-qa.py](https://github.com/microsoft/onnxruntime-genai/blob/main/examples/python/phi3-qa.py)

Only execute the steps needed for your hardware.

## Optimized for your Platform

<img class="m-auto w50" src="./platform-optimization-map.png" alt="Mapping of which model to use based on hardware">

Phi-3 Small 8K ONNX Models:
- [microsoft/Phi-3-small-8k-instruct-onnx-cuda](https://huggingface.co/microsoft/Phi-3-small-8k-instruct-onnx-cuda)
- [microsoft/Phi-3-small-128k-instruct-onnx-cuda](https://huggingface.co/microsoft/Phi-3-small-128k-instruct-onnx-cuda)

Phi-3 Medium 4k ONNX Models:
- [microsoft/Phi-3-medium-4k-instruct-onnx-cpu](https://huggingface.co/microsoft/Phi-3-medium-4k-instruct-onnx-cpu)
- [microsoft/Phi-3-medium-4k-instruct-onnx-cuda](https://huggingface.co/microsoft/Phi-3-medium-4k-instruct-onnx-cuda)
- [microsoft/Phi-3-medium-4k-instruct-onnx-directml](https://huggingface.co/microsoft/Phi-3-medium-4k-instruct-onnx-directml)

Phi-3 Medium 128k ONNX Models:
- [microsoft/Phi-3-medium-128k-instruct-onnx-cpu](https://huggingface.co/microsoft/Phi-3-medium-128k-instruct-onnx-cpu)
- [microsoft/Phi-3-medium-128k-instruct-onnx-cuda](https://huggingface.co/microsoft/Phi-3-medium-128k-instruct-onnx-cuda)
- [microsoft/Phi-3-medium-128k-instruct-onnx-directml](https://huggingface.co/microsoft/Phi-3-medium-128k-instruct-onnx-directml)


<!--- Phi-3 Vision 128k ONNX Models: -->
<!--- - [microsoft/Phi-3-vision-128k-instruct-onnx-cpu](https://huggingface.co/microsoft/Phi-3-vision-128k-instruct-onnx-cpu) -->
<!--- - [microsoft/Phi-3-vision-128k-instruct-onnx-cuda](https://huggingface.co/microsoft/Phi-3-vision-128k-instruct-onnx-cuda) -->
<!--- - [microsoft/Phi-3-vision-128k-instruct-onnx-directml](https://huggingface.co/microsoft/Phi-3-vision-128k-instruct-onnx-directml) -->


## Performance

The ONNX Runtime models can run up to 10X faster than the PyTorch variants. The Token Generation Throughput in tokens/sec is listed below for different variants.

| Model | Batch Size, Prompt Length | Model Variant | Token Generation Throughput (tokens/sec) |
| ------------------------------- | ------------------------------ | ----------------------------------- | --------------------------------------------- |
| **Phi-3 Medium 4K** | | | |
| Phi-3 Medium 4K 14B ONNX CUDA | 1, 16 | FP16 CUDA GPU with ONNX Runtime | 47.32 |
| Phi-3 Medium 4K 14B ONNX CUDA | 16, 64 | FP16 CUDA GPU with ONNX Runtime | 698.22 |
| Phi-3 Medium 4K 14B ONNX CUDA | 1, 16 | INT4 RTN CUDA GPU with ONNX Runtime | 115.68 |
| Phi-3 Medium 4K 14B ONNX CUDA | 16, 64 | INT4 RTN CUDA GPU with ONNX Runtime | 339.45 |
| Phi-3 Medium 4K 14B ONNX DML | 1, 16 | DML INT4 AWQ with ONNX Runtime | 72.39 |
| Phi-3 Medium 4K 14B ONNX CPU | 16, 64 | INT4 RTN CPU with ONNX Runtime | 20.77 |
| **Phi-3 Medium 128K** | | | |
| Phi-3 Medium 128K 14B ONNX CUDA | 1, 16 | FP16 CUDA GPU with ONNX Runtime | 46.27 |
| Phi-3 Medium 128K 14B ONNX CUDA | 16, 64 | FP16 CUDA GPU with ONNX Runtime | 662.23 |
| Phi-3 Medium 128K 14B ONNX CUDA | 1, 16 | INT4 RTN CUDA GPU with ONNX Runtime | 108.59 |
| Phi-3 Medium 128K 14B ONNX CUDA | 16, 64 | INT4 RTN CUDA GPU with ONNX Runtime | 332.57 |
| Phi-3 Medium 128K 14B ONNX DML | 1, 16 | DML INT4 AWQ with ONNX Runtime | 72.26 |

| Model | Batch Size, Prompt Length | Model Variant | Token Generation Throughput (tokens/sec) |
| ------------------------------- | ------------------------------ | ----------------------------------- | --------------------------------------------- |
| **Phi-3 Small 8k** | | | |
| Phi-3 Small 8K 7B ONNX CUDA | 1, 16 | FP16 CUDA GPU with ONNX Runtime | 74.62 |
| Phi-3 Small 8K 7B ONNX CUDA | 16, 64 | FP16 CUDA GPU with ONNX Runtime | 1036.93 |
| Phi-3 Small 8K 7B ONNX CUDA | 1, 16 | INT4 RTN CUDA GPU with ONNX Runtime | 140.68 |
| Phi-3 Small 8K 7B ONNX CUDA | 16, 64 | INT4 RTN CUDA GPU with ONNX Runtime | 582.07 |
| **Phi-3 Small 128k** | | | |
| Phi-3 Small 128K 7B ONNX CUDA | 1, 16 | FP16 CUDA GPU with ONNX Runtime | 68.26 |
| Phi-3 Small 128K 7B ONNX CUDA | 16, 64 | FP16 CUDA GPU with ONNX Runtime | 577.41 |
| Phi-3 Small 128K 7B ONNX CUDA | 1, 16 | INT4 RTN CUDA GPU with ONNX Runtime | 73.60 |
| Phi-3 Small 128K 7B ONNX CUDA | 16, 64 | INT4 RTN CUDA GPU with ONNX Runtime | 1008.35 |

*Devices:*
- *CUDA: A100 GPU, SKU: Standard_ND96amsr_A100_v4*
- *DML: Nvidia GeForce RTX 4080 (Dedicated Mem 16GB/Shared Mem 24GB)*
- *CPU: Intel(R) Core(TM) i9-10920X CPU @ 3.50GHz*

*Packages:*
- *onnxruntime-gpu: 1.18.0*

## Get started today

To experience optimized [Phi-3](https://aka.ms/Phi-3Build2024) for yourself, you can now easily run these models using ONNX Runtime generate() [API instructions](https://aka.ms/run-phi3-med-onnx). To learn more, join us at ONNX Runtime, DML, and Phi-3 sessions at [Build](https://build.microsoft.com/en-US/sessions?search=ONNX&sortBy=relevance)!


Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.

0 comments on commit 7acca7b

Please sign in to comment.