Skip to content

Commit

Permalink
[CoreML] Add Softmax and Split op support (#18358)
Browse files Browse the repository at this point in the history
### Description
<!-- Describe your changes. -->

As title.

### Motivation and Context
<!-- - Why is this change required? What problem does it solve?
- If it fixes an open issue, please link to the issue here. -->

Added for yolov8 model missing operator support.
#17654

Now the model support info looks like:
 
_CoreMLExecutionProvider::GetCapability, number of partitions supported
by CoreML: 3 number of nodes in the graph: 233 number of nodes supported
by CoreML: 230_

(only missing 3 concat op support due to input 3d shape is not currently
support in CoreML EP Concat).

---------

Co-authored-by: rachguo <[email protected]>
Co-authored-by: rachguo <[email protected]>
Co-authored-by: Edward Chen <[email protected]>
  • Loading branch information
4 people authored Nov 23, 2023
1 parent 6f3c1f9 commit 62f00ad
Show file tree
Hide file tree
Showing 9 changed files with 394 additions and 7 deletions.
128 changes: 128 additions & 0 deletions onnxruntime/core/providers/coreml/builders/impl/softmax_op_builder.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,128 @@
// Copyright (c) Microsoft Corporation. All rights reserved.
// Licensed under the MIT License.

#include "core/providers/coreml/builders/impl/base_op_builder.h"

#include "core/framework/tensorprotoutils.h"
#include "core/providers/common.h"
#include "core/providers/coreml/shape_utils.h"
#include "core/providers/shared/utils/utils.h"

#ifdef __APPLE__
#include "core/providers/coreml/builders/model_builder.h"
#endif
#include "core/providers/coreml/builders/op_builder_factory.h"

namespace onnxruntime {
namespace coreml {

class SoftmaxOpBuilder : public BaseOpBuilder {
// Add operator related
#ifdef __APPLE__
private:
Status AddToModelBuilderImpl(ModelBuilder& model_builder, const Node& node,
const logging::Logger& logger) const override;
#endif

// Operator support related
private:
bool IsOpSupportedImpl(const Node& node, const OpBuilderInputParams& input_params,
const logging::Logger& logger) const override;
};

// Add operator related

#ifdef __APPLE__

Status SoftmaxOpBuilder::AddToModelBuilderImpl(ModelBuilder& model_builder,
const Node& node,
const logging::Logger& logger) const {
std::unique_ptr<COREML_SPEC::NeuralNetworkLayer> layer = CreateNNLayer(model_builder, node);
const auto& input_name = node.InputDefs()[0]->Name();
const auto& output_name = node.OutputDefs()[0]->Name();

std::vector<int64_t> data_shape;
ORT_RETURN_IF_NOT(GetStaticShape(*node.InputDefs()[0], data_shape, logger), "Failed to get input shape.");

NodeAttrHelper helper(node);
int32_t axis_default_value = (node.SinceVersion() < 13) ? 1 : -1;
const auto axis = helper.Get("axis", axis_default_value);
const auto axis_nonnegative = HandleNegativeAxis(axis, data_shape.size());

if (node.SinceVersion() >= 13 || (data_shape.size() == 2)) {
auto* coreml_softmaxnd = layer->mutable_softmaxnd();
coreml_softmaxnd->set_axis(axis);
*layer->mutable_input()->Add() = input_name;
*layer->mutable_output()->Add() = output_name;
model_builder.AddLayer(std::move(layer));
} else {
// note: if opsets < 13, onnx Softmax coerces the input shape to be 2D based on axis.
// we need to manually reshape to 2D and apply SoftmaxND to axis -1 to achieve equivalent results for CoreML.
TensorShape input_shape(data_shape);
const auto size_to_dimension = input_shape.SizeToDimension(axis_nonnegative);
const auto size_from_dimension = input_shape.SizeFromDimension(axis_nonnegative);

TensorShapeVector target_shape;
target_shape.push_back(size_to_dimension);
target_shape.push_back(size_from_dimension);

const auto reshape1_output_name = model_builder.GetUniqueName(MakeString(node.Name(), "reshape1_output"));
{ // Add reshape layer
const auto softmax_reshape1_layer_name =
model_builder.GetUniqueName(MakeString(node.Name(), "_Softmax_reshape1"));
auto reshape_layer = CreateNNLayer(softmax_reshape1_layer_name);
*reshape_layer->mutable_reshapestatic()->mutable_targetshape() = {target_shape.cbegin(), target_shape.cend()};
*reshape_layer->mutable_input()->Add() = input_name;
*reshape_layer->mutable_output()->Add() = reshape1_output_name;
model_builder.AddLayer(std::move(reshape_layer));
}
const auto softmax_output_name = model_builder.GetUniqueName(MakeString(node.Name(), "softmax_output"));
{
auto* coreml_softmaxnd = layer->mutable_softmaxnd();
coreml_softmaxnd->set_axis(-1);
*layer->mutable_input()->Add() = reshape1_output_name;
*layer->mutable_output()->Add() = softmax_output_name;
model_builder.AddLayer(std::move(layer));
}
{
// Add reshape back layer
const auto softmax_reshape2_layer_name =
model_builder.GetUniqueName(MakeString(node.Name(), "_Softmax_reshape2"));
auto reshape_layer = CreateNNLayer(softmax_reshape2_layer_name);
*reshape_layer->mutable_reshapestatic()->mutable_targetshape() = {data_shape.cbegin(), data_shape.cend()};
*reshape_layer->mutable_input()->Add() = softmax_output_name;
*reshape_layer->mutable_output()->Add() = output_name;
model_builder.AddLayer(std::move(reshape_layer));
}
}

return Status::OK();
}

#endif

// Operator support related

bool SoftmaxOpBuilder::IsOpSupportedImpl(const Node& node, const OpBuilderInputParams& /* input_params */,
const logging::Logger& logger) const {
const auto& input_defs = node.InputDefs();
std::vector<int64_t> input_shape;
if (!GetStaticShape(*input_defs[0], input_shape, logger))
return false;

const TensorShape shape(input_shape);
if (shape.Size() == 0) {
LOGS(logger, VERBOSE) << "Empty input data is not supported.";
return false;
}

return true;
}

void CreateSoftmaxOpBuilder(const std::string& op_type, OpBuilderRegistrations& op_registrations) {
op_registrations.builders.push_back(std::make_unique<SoftmaxOpBuilder>());
op_registrations.op_builder_map.emplace(op_type, op_registrations.builders.back().get());
}

} // namespace coreml
} // namespace onnxruntime
189 changes: 189 additions & 0 deletions onnxruntime/core/providers/coreml/builders/impl/split_op_builder.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,189 @@
// Copyright (c) Microsoft Corporation. All rights reserved.
// Licensed under the MIT License.

#include "core/providers/coreml/builders/impl/base_op_builder.h"

#include "core/optimizer/initializer.h"
#include "core/providers/common.h"
#include "core/providers/coreml/builders/helper.h"
#include "core/providers/coreml/builders/op_builder_factory.h"
#include "core/providers/coreml/shape_utils.h"
#include "core/providers/shared/utils/utils.h"

#if defined(__APPLE__)
#include "core/providers/coreml/builders/model_builder.h"
#endif

namespace onnxruntime {
namespace coreml {

class SplitOpBuilder : public BaseOpBuilder {
// Add operator related
#ifdef __APPLE__
private:
void AddInitializersToSkip(ModelBuilder& model_builder, const Node& node) const override;

private:
Status AddToModelBuilderImpl(ModelBuilder& model_builder, const Node& node,
const logging::Logger& logger) const override;
#endif

// Operator support related
private:
bool IsOpSupportedImpl(const Node& node, const OpBuilderInputParams& input_params,
const logging::Logger& logger) const override;

// Split opset 13- uses "split" as attribute. Currently it's not supported.
int GetMinSupportedOpSet(const Node& /* node */) const override { return 13; }
};

// Add operator related

#ifdef __APPLE__

void SplitOpBuilder::AddInitializersToSkip(ModelBuilder& model_builder, const Node& node) const {
const auto& input_defs = node.InputDefs();

if (input_defs.size() > 1 && input_defs[1]->Exists()) { // optional second input "split"
model_builder.AddInitializerToSkip(input_defs[1]->Name());
}
}

Status SplitOpBuilder::AddToModelBuilderImpl(ModelBuilder& model_builder,
const Node& node,
const logging::Logger& logger) const {
const auto& input_defs = node.InputDefs();

std::vector<int64_t> data_shape;
ORT_RETURN_IF_NOT(GetShape(*node.InputDefs()[0], data_shape, logger), "Failed to get input shape.");

NodeAttrHelper helper(node);
const auto axis = helper.Get("axis", 0);

// attribute introduced since opset 18
uint64_t num_outputs;

std::unique_ptr<COREML_SPEC::NeuralNetworkLayer> layer = CreateNNLayer(model_builder, node);
auto* coreml_splitnd = layer->mutable_splitnd();
coreml_splitnd->set_axis(axis);

if (input_defs.size() > 1) {
// if "split" is explicitly provided as an input
const auto& split_tensor = *model_builder.GetInitializerTensors().at(input_defs[1]->Name());
Initializer unpacked_tensor(split_tensor);
auto split_span = unpacked_tensor.DataAsSpan<uint64_t>();
auto split_sizes = split_span.size();
num_outputs = narrow<uint64_t>(split_sizes);
for (size_t i = 0; i < split_sizes; i++) {
coreml_splitnd->add_splitsizes(split_span[i]);
}
} else if (node.SinceVersion() < 18) {
num_outputs = narrow<uint64_t>(node.OutputDefs().size());
coreml_splitnd->set_numsplits(num_outputs);
} else {
// note: for opset 18+ 'num_outputs' is a required attribute
num_outputs = narrow<uint64_t>(helper.GetInt("num_outputs").value());
// note: checked in IsOpSupportedImpl that ensures the dim value at splitting axis exists
auto split_dim_size = data_shape[HandleNegativeAxis(axis, data_shape.size())];
uint64_t chunk_size = narrow<uint64_t>((split_dim_size + num_outputs - 1) / num_outputs);
uint64_t remainder = split_dim_size % chunk_size;
if (remainder) {
// uneven
auto split_sizes = InlinedVector<uint64_t>(num_outputs, chunk_size);
split_sizes.back() = remainder;
for (size_t i = 0; i < split_sizes.size(); i++) {
coreml_splitnd->add_splitsizes(split_sizes[i]);
}
} else {
// even
coreml_splitnd->set_numsplits(num_outputs);
}
}

*layer->mutable_input()->Add() = node.InputDefs()[0]->Name();
// variadic number of outputs. Calculated based on the length of the given splitSizes if provided.
// Otherwise, uses attribute value 'num_outputs'.
for (uint64_t i = 0; i < num_outputs; i++) {
*layer->mutable_output()->Add() = node.OutputDefs()[i]->Name();
}
model_builder.AddLayer(std::move(layer));

return Status::OK();
}

#endif

// Operator support related

bool SplitOpBuilder::IsOpSupportedImpl(const Node& node, const OpBuilderInputParams& input_params,
const logging::Logger& logger) const {
const auto& input_defs = node.InputDefs();
const auto& initializers = input_params.graph_viewer.GetAllInitializedTensors();

NodeAttrHelper helper(node);
const auto axis = helper.Get("axis", 0);

std::vector<int64_t> input_shape;
if (!GetShape(*input_defs[0], input_shape, logger))
return false;

const auto split_dims_at_axis = input_shape[HandleNegativeAxis(axis, input_shape.size())];
if (input_defs.size() > 1 && input_defs[1]->Exists()) {
if (!CheckIsConstantInitializer(*input_defs[1], input_params.graph_viewer, logger, "'split'")) {
return false;
}
const auto split_shape = *input_defs[1]->Shape();
if (split_shape.dim_size() < 2) {
LOGS(logger, VERBOSE) << "CoreML SplitND requires to produce at least 2 outputs.";
return false;
}
const auto& splits_tensor = *initializers.at(input_defs[1]->Name());
Initializer unpacked_tensor(splits_tensor);
auto splits_span = unpacked_tensor.DataAsSpan<uint64_t>();
int sum_of_splits = std::accumulate(splits_span.begin(), splits_span.end(), 0);
if (sum_of_splits != split_dims_at_axis) {
LOGS(logger, VERBOSE) << "Mismatch between the sum of 'split'. Expected: "
<< split_dims_at_axis
<< "Actual: "
<< sum_of_splits;
return false;
}
auto it = std::find(splits_span.begin(), splits_span.end(), 0);
if (it != splits_span.end()) {
LOGS(logger, VERBOSE) << "Invalid value in 'splits' input.";
return false;
}
if (split_dims_at_axis == -1) {
LOGS(logger, VERBOSE) << "Dim at the splitting axis is not allowed to be dynamic.";
return false;
}
} else {
if (node.SinceVersion() >= 18) {
const auto num_outputs = helper.GetInt("num_outputs");
if (!num_outputs.has_value()) {
LOGS(logger, VERBOSE) << "No 'num_outputs' provided. For split 18+, num_outputs is a required attribute.";
return false;
}
if (num_outputs.value() < 2) {
LOGS(logger, VERBOSE) << "Invalid num_outputs. The value cannot be lower than 2.\n"
<< "CoreML SplitND requires at least 2 outputs. num_outputs: " << num_outputs.value();
return false;
}
if (num_outputs.value() != static_cast<int32_t>(node.OutputDefs().size()) || num_outputs.value() > split_dims_at_axis) {
LOGS(logger, VERBOSE) << "Invalid num_outputs provided.\n."
<< "The value should be smaller or equal to the size of dimension being split. num_outputs: "
<< num_outputs.value();
return false;
}
}
}
return true;
}

void CreateSplitOpBuilder(const std::string& op_type, OpBuilderRegistrations& op_registrations) {
op_registrations.builders.push_back(std::make_unique<SplitOpBuilder>());
op_registrations.op_builder_map.emplace(op_type, op_registrations.builders.back().get());
}

} // namespace coreml
} // namespace onnxruntime
Original file line number Diff line number Diff line change
Expand Up @@ -122,6 +122,14 @@ static OpBuilderRegistrations CreateOpBuilderRegistrations() {
CreateSliceOpBuilder("Slice", op_registrations);
}

{ // Softmax
CreateSoftmaxOpBuilder("Softmax", op_registrations);
}

{ // Split
CreateSplitOpBuilder("Split", op_registrations);
}

return op_registrations;
}

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -36,6 +36,8 @@ void CreateReshapeOpBuilder(const std::string& op_type, OpBuilderRegistrations&
void CreateResizeOpBuilder(const std::string& op_type, OpBuilderRegistrations& op_registrations);
void CreateShapeOpBuilder(const std::string& op_type, OpBuilderRegistrations& op_registrations);
void CreateSliceOpBuilder(const std::string& op_type, OpBuilderRegistrations& op_registrations);
void CreateSoftmaxOpBuilder(const std::string& op_type, OpBuilderRegistrations& op_registrations);
void CreateSplitOpBuilder(const std::string& op_type, OpBuilderRegistrations& op_registrations);
void CreateSqueezeOpBuilder(const std::string& op_type, OpBuilderRegistrations& op_registrations);
void CreateTransposeOpBuilder(const std::string& op_type, OpBuilderRegistrations& op_registrations);
void CreateUnaryOpBuilder(const std::string& op_type, OpBuilderRegistrations& op_registrations);
Expand Down
6 changes: 6 additions & 0 deletions onnxruntime/core/providers/shared/utils/utils.cc
Original file line number Diff line number Diff line change
Expand Up @@ -166,6 +166,12 @@ std::vector<float> NodeAttrHelper::Get(const std::string& key, const std::vector
return std::vector<float>{source.cbegin(), source.cend()};
}

std::optional<int64_t> NodeAttrHelper::GetInt(const std::string& key) const {
if (!HasAttr(key))
return std::nullopt;
return node_attributes_.at(key).i();
}

bool NodeAttrHelper::HasAttr(const std::string& key) const {
return Contains(node_attributes_, key);
}
Expand Down
3 changes: 3 additions & 0 deletions onnxruntime/core/providers/shared/utils/utils.h
Original file line number Diff line number Diff line change
Expand Up @@ -6,6 +6,7 @@
#include <cstdint>
#include <string>
#include <vector>
#include <optional>

#include "core/graph/basic_types.h"

Expand Down Expand Up @@ -57,6 +58,8 @@ class NodeAttrHelper {
uint32_t Get(const std::string& key, uint32_t def_val) const;
std::vector<uint32_t> Get(const std::string& key, const std::vector<uint32_t>& def_val) const;

std::optional<int64_t> GetInt(const std::string& key) const;

bool HasAttr(const std::string& key) const;

private:
Expand Down
2 changes: 1 addition & 1 deletion onnxruntime/test/providers/cpu/math/softmax_test.cc
Original file line number Diff line number Diff line change
Expand Up @@ -421,7 +421,7 @@ TEST(SoftmaxOperator, GH15949_regression_test) {
{0.00032932f, 0.01798029f, 0.9816904f});

// disable TRT as it does not support axis=0 as used by the model
tester.Run(OpTester::ExpectResult::kExpectSuccess, "", {kTensorrtExecutionProvider, kCoreMLExecutionProvider});
tester.Run(OpTester::ExpectResult::kExpectSuccess, "", {kTensorrtExecutionProvider});
}

} // namespace test
Expand Down
Loading

0 comments on commit 62f00ad

Please sign in to comment.