Skip to content

Commit

Permalink
Revert "[TensorRT EP] Refactor OrtTensorRTProviderOptions initializat…
Browse files Browse the repository at this point in the history
…ion and make it easy to add new field (#17617)"

This reverts commit 569876f.
  • Loading branch information
yf711 committed Oct 9, 2023
1 parent 9a86967 commit 364b192
Show file tree
Hide file tree
Showing 25 changed files with 485 additions and 445 deletions.
Original file line number Diff line number Diff line change
@@ -0,0 +1,14 @@
// Copyright (c) Microsoft Corporation. All rights reserved.
// Licensed under the MIT License.

#include "onnxruntime_c_api.h"

#ifdef __cplusplus
extern "C" {
#endif

ORT_API_STATUS(OrtSessionOptionsAppendExecutionProvider_Tensorrt, _In_ OrtSessionOptions* options, int device_id);

#ifdef __cplusplus
}
#endif
Original file line number Diff line number Diff line change
Expand Up @@ -11,38 +11,38 @@
/// User can only get the instance of OrtTensorRTProviderOptionsV2 via CreateTensorRTProviderOptions.
/// </summary>
struct OrtTensorRTProviderOptionsV2 {
int device_id{0}; // cuda device id.
int has_user_compute_stream{0}; // indicator of user specified CUDA compute stream.
void* user_compute_stream{nullptr}; // user specified CUDA compute stream.
int trt_max_partition_iterations{1000}; // maximum iterations for TensorRT parser to get capability
int trt_min_subgraph_size{1}; // minimum size of TensorRT subgraphs
size_t trt_max_workspace_size{1 << 30}; // maximum workspace size for TensorRT.
int trt_fp16_enable{0}; // enable TensorRT FP16 precision. Default 0 = false, nonzero = true
int trt_int8_enable{0}; // enable TensorRT INT8 precision. Default 0 = false, nonzero = true
const char* trt_int8_calibration_table_name{nullptr}; // TensorRT INT8 calibration table name.
int trt_int8_use_native_calibration_table{0}; // use native TensorRT generated calibration table. Default 0 = false, nonzero = true
int trt_dla_enable{0}; // enable DLA. Default 0 = false, nonzero = true
int trt_dla_core{0}; // DLA core number. Default 0
int trt_dump_subgraphs{0}; // dump TRT subgraph. Default 0 = false, nonzero = true
int trt_engine_cache_enable{0}; // enable engine caching. Default 0 = false, nonzero = true
const char* trt_engine_cache_path{nullptr}; // specify engine cache path
int trt_engine_decryption_enable{0}; // enable engine decryption. Default 0 = false, nonzero = true
const char* trt_engine_decryption_lib_path{nullptr}; // specify engine decryption library path
int trt_force_sequential_engine_build{0}; // force building TensorRT engine sequentially. Default 0 = false, nonzero = true
int trt_context_memory_sharing_enable{0}; // enable context memory sharing between subgraphs. Default 0 = false, nonzero = true
int trt_layer_norm_fp32_fallback{0}; // force Pow + Reduce ops in layer norm to FP32. Default 0 = false, nonzero = true
int trt_timing_cache_enable{0}; // enable TensorRT timing cache. Default 0 = false, nonzero = true
int trt_force_timing_cache{0}; // force the TensorRT cache to be used even if device profile does not match. Default 0 = false, nonzero = true
int trt_detailed_build_log{0}; // Enable detailed build step logging on TensorRT EP with timing for each engine build. Default 0 = false, nonzero = true
int trt_build_heuristics_enable{0}; // Build engine using heuristics to reduce build time. Default 0 = false, nonzero = true
int trt_sparsity_enable{0}; // Control if sparsity can be used by TRT. Default 0 = false, 1 = true
int trt_builder_optimization_level{3}; // Set the builder optimization level. WARNING: levels below 3 do not guarantee good engine performance, but greatly improve build time. Default 3, valid range [0-5]
int trt_auxiliary_streams{-1}; // Set maximum number of auxiliary streams per inference stream. Setting this value to 0 will lead to optimal memory usage. Default -1 = heuristics
const char* trt_tactic_sources{nullptr}; // pecify the tactics to be used by adding (+) or removing (-) tactics from the default
// tactic sources (default = all available tactics) e.g. "-CUDNN,+CUBLAS" available keys: "CUBLAS"|"CUBLAS_LT"|"CUDNN"|"EDGE_MASK_CONVOLUTIONS"
const char* trt_extra_plugin_lib_paths{nullptr}; // specify extra TensorRT plugin library paths
const char* trt_profile_min_shapes{nullptr}; // Specify the range of the input shapes to build the engine with
const char* trt_profile_max_shapes{nullptr}; // Specify the range of the input shapes to build the engine with
const char* trt_profile_opt_shapes{nullptr}; // Specify the range of the input shapes to build the engine with
int trt_cuda_graph_enable{0}; // Enable CUDA graph in ORT TRT
int device_id; // cuda device id.
int has_user_compute_stream; // indicator of user specified CUDA compute stream.
void* user_compute_stream; // user specified CUDA compute stream.
int trt_max_partition_iterations; // maximum iterations for TensorRT parser to get capability
int trt_min_subgraph_size; // minimum size of TensorRT subgraphs
size_t trt_max_workspace_size; // maximum workspace size for TensorRT.
int trt_fp16_enable; // enable TensorRT FP16 precision. Default 0 = false, nonzero = true
int trt_int8_enable; // enable TensorRT INT8 precision. Default 0 = false, nonzero = true
const char* trt_int8_calibration_table_name; // TensorRT INT8 calibration table name.
int trt_int8_use_native_calibration_table; // use native TensorRT generated calibration table. Default 0 = false, nonzero = true
int trt_dla_enable; // enable DLA. Default 0 = false, nonzero = true
int trt_dla_core; // DLA core number. Default 0
int trt_dump_subgraphs; // dump TRT subgraph. Default 0 = false, nonzero = true
int trt_engine_cache_enable; // enable engine caching. Default 0 = false, nonzero = true
const char* trt_engine_cache_path; // specify engine cache path
int trt_engine_decryption_enable; // enable engine decryption. Default 0 = false, nonzero = true
const char* trt_engine_decryption_lib_path; // specify engine decryption library path
int trt_force_sequential_engine_build; // force building TensorRT engine sequentially. Default 0 = false, nonzero = true
int trt_context_memory_sharing_enable; // enable context memory sharing between subgraphs. Default 0 = false, nonzero = true
int trt_layer_norm_fp32_fallback; // force Pow + Reduce ops in layer norm to FP32. Default 0 = false, nonzero = true
int trt_timing_cache_enable; // enable TensorRT timing cache. Default 0 = false, nonzero = true
int trt_force_timing_cache; // force the TensorRT cache to be used even if device profile does not match. Default 0 = false, nonzero = true
int trt_detailed_build_log; // Enable detailed build step logging on TensorRT EP with timing for each engine build. Default 0 = false, nonzero = true
int trt_build_heuristics_enable; // Build engine using heuristics to reduce build time. Default 0 = false, nonzero = true
int trt_sparsity_enable; // Control if sparsity can be used by TRT. Default 0 = false, 1 = true
int trt_builder_optimization_level; // Set the builder optimization level. WARNING: levels below 3 do not guarantee good engine performance, but greatly improve build time. Default 3, valid range [0-5]
int trt_auxiliary_streams; // Set maximum number of auxiliary streams per inference stream. Setting this value to 0 will lead to optimal memory usage. Default -1 = heuristics
const char* trt_tactic_sources; // pecify the tactics to be used by adding (+) or removing (-) tactics from the default
// tactic sources (default = all available tactics) e.g. "-CUDNN,+CUBLAS" available keys: "CUBLAS"|"CUBLAS_LT"|"CUDNN"|"EDGE_MASK_CONVOLUTIONS"
const char* trt_extra_plugin_lib_paths; // specify extra TensorRT plugin library paths
const char* trt_profile_min_shapes; // Specify the range of the input shapes to build the engine with
const char* trt_profile_max_shapes; // Specify the range of the input shapes to build the engine with
const char* trt_profile_opt_shapes; // Specify the range of the input shapes to build the engine with
int trt_cuda_graph_enable; // Enable CUDA graph in ORT TRT
};
8 changes: 0 additions & 8 deletions include/onnxruntime/core/session/onnxruntime_c_api.h
Original file line number Diff line number Diff line change
Expand Up @@ -4572,14 +4572,6 @@ ORT_API_STATUS(OrtSessionOptionsAppendExecutionProvider_MIGraphX, _In_ OrtSessio
*/
ORT_API_STATUS(OrtSessionOptionsAppendExecutionProvider_Dnnl, _In_ OrtSessionOptions* options, int use_arena);

/*
* This is the old way to add the TensorRT provider to the session, please use SessionOptionsAppendExecutionProvider_TensorRT_V2 above to access the latest functionality
* This function always exists, but will only succeed if Onnxruntime was built with TensorRT support and the TensorRT provider shared library exists
*
* \param device_id CUDA device id, starts from zero.
*/
ORT_API_STATUS(OrtSessionOptionsAppendExecutionProvider_Tensorrt, _In_ OrtSessionOptions* options, int device_id);

#ifdef __cplusplus
}
#endif
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -19,6 +19,7 @@
#include "onnxruntime/core/providers/nnapi/nnapi_provider_factory.h"
#include "onnxruntime/core/providers/tvm/tvm_provider_factory.h"
#include "onnxruntime/core/providers/openvino/openvino_provider_factory.h"
#include "onnxruntime/core/providers/tensorrt/tensorrt_provider_factory.h"
#include "onnxruntime/core/providers/acl/acl_provider_factory.h"
#include "onnxruntime/core/providers/armnn/armnn_provider_factory.h"
#include "onnxruntime/core/providers/coreml/coreml_provider_factory.h"
Expand Down
1 change: 1 addition & 0 deletions js/node/src/session_options_helper.cc
Original file line number Diff line number Diff line change
Expand Up @@ -16,6 +16,7 @@
#include "core/providers/dml/dml_provider_factory.h"
#endif
#ifdef USE_TENSORRT
#include "core/providers/tensorrt/tensorrt_provider_factory.h"
#include "core/providers/tensorrt/tensorrt_provider_options.h"
#endif
#ifdef USE_COREML
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -26,16 +26,27 @@ extern TensorrtLogger& GetTensorrtLogger();
* Note: Current TRT plugin doesn't have APIs to get number of inputs/outputs of the plugin.
* So, TensorRTCustomOp uses variadic inputs/outputs to pass ONNX graph validation.
*/
common::Status CreateTensorRTCustomOpDomainList(std::vector<OrtCustomOpDomain*>& domain_list, const std::string extra_plugin_lib_paths) {
common::Status CreateTensorRTCustomOpDomainList(TensorrtExecutionProviderInfo& info) {
std::unique_ptr<OrtCustomOpDomain> custom_op_domain = std::make_unique<OrtCustomOpDomain>();
custom_op_domain->domain_ = "trt.plugins";

// Load any extra TRT plugin library if any.
// When the TRT plugin library is loaded, the global static object is created and the plugin is registered to TRT registry.
// This is done through macro, for example, REGISTER_TENSORRT_PLUGIN(VisionTransformerPluginCreator).
std::string extra_plugin_lib_paths{""};
if (info.has_trt_options) {
if (!info.extra_plugin_lib_paths.empty()) {
extra_plugin_lib_paths = info.extra_plugin_lib_paths;
}
} else {
const std::string extra_plugin_lib_paths_env = onnxruntime::GetEnvironmentVar(tensorrt_env_vars::kExtraPluginLibPaths);
if (!extra_plugin_lib_paths_env.empty()) {
extra_plugin_lib_paths = extra_plugin_lib_paths_env;
}
}

// extra_plugin_lib_paths has the format of "path_1;path_2....;path_n"
static bool is_loaded = false;
if (!extra_plugin_lib_paths.empty() && !is_loaded) {
if (!extra_plugin_lib_paths.empty()) {
std::stringstream extra_plugin_libs(extra_plugin_lib_paths);
std::string lib;
while (std::getline(extra_plugin_libs, lib, ';')) {
Expand All @@ -46,59 +57,35 @@ common::Status CreateTensorRTCustomOpDomainList(std::vector<OrtCustomOpDomain*>&
LOGS_DEFAULT(WARNING) << "[TensorRT EP]" << status.ToString();
}
}
is_loaded = true;
}

try {
// Get all registered TRT plugins from registry
LOGS_DEFAULT(VERBOSE) << "[TensorRT EP] Getting all registered TRT plugins from TRT plugin registry ...";
TensorrtLogger trt_logger = GetTensorrtLogger();
initLibNvInferPlugins(&trt_logger, "");

int num_plugin_creator = 0;
auto plugin_creators = getPluginRegistry()->getPluginCreatorList(&num_plugin_creator);
std::unordered_set<std::string> registered_plugin_names;
// Get all registered TRT plugins from registry
LOGS_DEFAULT(VERBOSE) << "[TensorRT EP] Getting all registered TRT plugins from TRT plugin registry ...";
TensorrtLogger trt_logger = GetTensorrtLogger();
initLibNvInferPlugins(&trt_logger, "");

for (int i = 0; i < num_plugin_creator; i++) {
auto plugin_creator = plugin_creators[i];
std::string plugin_name(plugin_creator->getPluginName());
LOGS_DEFAULT(VERBOSE) << "[TensorRT EP] " << plugin_name << ", version : " << plugin_creator->getPluginVersion();
int num_plugin_creator = 0;
auto plugin_creators = getPluginRegistry()->getPluginCreatorList(&num_plugin_creator);
std::unordered_set<std::string> registered_plugin_names;

// plugin has different versions and we only register once
if (registered_plugin_names.find(plugin_name) != registered_plugin_names.end()) {
continue;
}
for (int i = 0; i < num_plugin_creator; i++) {
auto plugin_creator = plugin_creators[i];
std::string plugin_name(plugin_creator->getPluginName());
LOGS_DEFAULT(VERBOSE) << "[TensorRT EP] " << plugin_name << ", version : " << plugin_creator->getPluginVersion();

std::unique_ptr<TensorRTCustomOp> trt_custom_op = std::make_unique<TensorRTCustomOp>(onnxruntime::kTensorrtExecutionProvider, nullptr);
trt_custom_op->SetName(plugin_creator->getPluginName());
custom_op_domain->custom_ops_.push_back(trt_custom_op.release());
registered_plugin_names.insert(plugin_name);
// plugin has different versions and we only register once
if (registered_plugin_names.find(plugin_name) != registered_plugin_names.end()) {
continue;
}
domain_list.push_back(custom_op_domain.release());
} catch (const std::exception&) {
LOGS_DEFAULT(WARNING) << "[TensorRT EP] Failed to get TRT plugins from TRT plugin registration. Therefore, TRT EP can't create custom ops for TRT plugins";
}
return Status::OK();
}

common::Status CreateTensorRTCustomOpDomainList(TensorrtExecutionProviderInfo& info) {
std::vector<OrtCustomOpDomain*> domain_list;
std::string extra_plugin_lib_paths{""};
if (info.has_trt_options) {
if (!info.extra_plugin_lib_paths.empty()) {
extra_plugin_lib_paths = info.extra_plugin_lib_paths;
}
} else {
const std::string extra_plugin_lib_paths_env = onnxruntime::GetEnvironmentVar(tensorrt_env_vars::kExtraPluginLibPaths);
if (!extra_plugin_lib_paths_env.empty()) {
extra_plugin_lib_paths = extra_plugin_lib_paths_env;
}
}
auto status = CreateTensorRTCustomOpDomainList(domain_list, extra_plugin_lib_paths);
if (!domain_list.empty()) {
info.custom_op_domain_list = domain_list;
std::unique_ptr<TensorRTCustomOp> trt_custom_op = std::make_unique<TensorRTCustomOp>(onnxruntime::kTensorrtExecutionProvider, nullptr);
trt_custom_op->SetName(plugin_creator->getPluginName());
custom_op_domain->custom_ops_.push_back(trt_custom_op.release());
registered_plugin_names.insert(plugin_name);
}
return Status::OK();
info.custom_op_domain_list.push_back(custom_op_domain.release());

return common::Status::OK();
}

void ReleaseTensorRTCustomOpDomain(OrtCustomOpDomain* domain) {
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -13,7 +13,6 @@ using namespace onnxruntime;
namespace onnxruntime {

common::Status LoadDynamicLibrary(onnxruntime::PathString library_name);
common::Status CreateTensorRTCustomOpDomainList(std::vector<OrtCustomOpDomain*>& domain_list, const std::string extra_plugin_lib_paths);
common::Status CreateTensorRTCustomOpDomainList(TensorrtExecutionProviderInfo& info);
void ReleaseTensorRTCustomOpDomain(OrtCustomOpDomain* domain);
void ReleaseTensorRTCustomOpDomainList(std::vector<OrtCustomOpDomain*>& custom_op_domain_list);
Expand Down
Loading

0 comments on commit 364b192

Please sign in to comment.