Skip to content

Commit

Permalink
Update Advanced-Topics.rst
Browse files Browse the repository at this point in the history
  • Loading branch information
metpavel authored Jul 13, 2023
1 parent 36f44f1 commit acfde2c
Showing 1 changed file with 1 addition and 1 deletion.
2 changes: 1 addition & 1 deletion docs/Advanced-Topics.rst
Original file line number Diff line number Diff line change
Expand Up @@ -99,4 +99,4 @@ In this case, LightGBM will load the position file automatically if it exists.

Also, you can include position column in your data file. Please refer to the ``position_column`` `parameter <#position_column>`__ in above.

Currently, implemented is an approach to model position bias by using an idea of Generalized Additive Models (`GAM <https://en.wikipedia.org/wiki/Generalized_additive_model>`_) to linearly decompose the document score ``s`` into a sum of a relevance component ``f`` and a positional component ``g``: ``s(x, pos) = f(x) + g(pos)`` where the former component depends on the original query-document features and the latter depends on the position of an item. During the training, the compound scoring function ``s(x, pos)`` is fit with a standard ranking algorithm (e.g., LambdaMART) which boils down to jointly learning the relevance component ``f(x)`` (it is later returned as an unbiased model) and the position factors ``g(pos)`` that help better explain the observed (biased) labels. Similar score decomposition ideas have previously been applied for classification & pointwise ranking tasks with assumptions of binary labels and binary relevance (a.k.a. "two-tower" models, refer to the papers: `Towards Disentangling Relevance and Bias in Unbiased Learning to Rank <https://arxiv.org/abs/2212.13937>`_, `PAL: a position-bias aware learning framework for CTR prediction in live recommender systems <https://dl.acm.org/doi/10.1145/3298689.3347033>`_, `A General Framework for Debiasing in CTR Prediction <https://arxiv.org/abs/2112.02767>`_). In LightGBM, we adapt this idea for the general pairwise Lerarning-to-Rank with arbitrary ordinal relevance labels. Besides, GAMs have been used in the context of explainable ML (`Accurate Intelligible Models with Pairwise Interactions <https://www.cs.cornell.edu/~yinlou/papers/lou-kdd13.pdf>`_) to linearly decompose the contribution of each feature (and possibly their pairwise intercations) for subsequent analysis and interpretation of their effects in the trained models.
Currently, implemented is an approach to model position bias by using an idea of Generalized Additive Models (`GAM <https://en.wikipedia.org/wiki/Generalized_additive_model>`_) to linearly decompose the document score ``s`` into the sum of a relevance component ``f`` and a positional component ``g``: ``s(x, pos) = f(x) + g(pos)`` where the former component depends on the original query-document features and the latter depends on the position of an item. During the training, the compound scoring function ``s(x, pos)`` is fit with a standard ranking algorithm (e.g., LambdaMART) which boils down to jointly learning the relevance component ``f(x)`` (it is later returned as an unbiased model) and the position factors ``g(pos)`` that help better explain the observed (biased) labels. Similar score decomposition ideas have previously been applied for classification & pointwise ranking tasks with assumptions of binary labels and binary relevance (a.k.a. "two-tower" models, refer to the papers: `Towards Disentangling Relevance and Bias in Unbiased Learning to Rank <https://arxiv.org/abs/2212.13937>`_, `PAL: a position-bias aware learning framework for CTR prediction in live recommender systems <https://dl.acm.org/doi/10.1145/3298689.3347033>`_, `A General Framework for Debiasing in CTR Prediction <https://arxiv.org/abs/2112.02767>`_). In LightGBM, we adapt this idea for the general pairwise Lerarning-to-Rank with arbitrary ordinal relevance labels. Besides, GAMs have been used in the context of explainable ML (`Accurate Intelligible Models with Pairwise Interactions <https://www.cs.cornell.edu/~yinlou/papers/lou-kdd13.pdf>`_) to linearly decompose the contribution of each feature (and possibly their pairwise intercations) for subsequent analysis and interpretation of their effects in the trained models.

0 comments on commit acfde2c

Please sign in to comment.