-
Notifications
You must be signed in to change notification settings - Fork 4.2k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge branch 'master' into cleanup_device
- Loading branch information
Showing
21 changed files
with
474 additions
and
90 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,90 @@ | ||
# Copyright (c) Microsoft Corporation. | ||
# SPDX-License-Identifier: Apache-2.0 | ||
|
||
# DeepSpeed Team | ||
|
||
from .optimized_linear import LoRAOptimizedLinear, OptimizedLinear | ||
|
||
import torch | ||
|
||
try: | ||
import transformers | ||
except ImportError: | ||
transformers = None | ||
|
||
|
||
def init_lora(model): | ||
model.requires_grad_(False) | ||
for m in model.modules(): | ||
if isinstance(m, LoRAOptimizedLinear): | ||
m.init_lora() | ||
|
||
|
||
class Init(object): | ||
""" | ||
Init context wrapper similar in style to zero.Init. Allows for injecting OptimizedLinear during model | ||
construction which will shard base weights and reduce overall memory usage during model init. Primarily | ||
useful when initializing a model via transformers.AutoModelForCausalLM. | ||
Example usage: | ||
lora_config = deepspeed.linear.LoRAConfig(..) | ||
quant_config = deepspeed.linear.QuantizationConfig(..) | ||
with deepspeed.linear.Init(lora_config=lora_config, quant_config=quant_config): | ||
model = AutoModelForCausalLM.from_pretrained("meta-llama/Meta-Llama-3.1-405B") | ||
""" | ||
|
||
def __init__(self, lora_config=None, quant_config=None): | ||
self._orig_nn_linear = torch.nn.Linear | ||
self._orig_causallm_pretrained = None | ||
if transformers != None: | ||
self._orig_causallm_pretrained = transformers.AutoModelForCausalLM.from_pretrained | ||
self._orig_causallm_config = transformers.AutoModelForCausalLM.from_config | ||
self.lora_config = lora_config | ||
self.quant_config = quant_config | ||
self._post_init_complete = False | ||
|
||
def __enter__(self): | ||
|
||
class OptLinearWrapper: | ||
_orig_nn_linear = self._orig_nn_linear | ||
_lora_config = self.lora_config | ||
_quant_config = self.quant_config | ||
|
||
def __new__(self, *args, **kwargs): | ||
self._lora_config.delay_lora_init = True | ||
kwargs['lora_config'] = self._lora_config | ||
kwargs['quantization_config'] = self._quant_config | ||
kwargs['linear_cls'] = self._orig_nn_linear | ||
return OptimizedLinear(*args, **kwargs) | ||
|
||
def _model_init(model): | ||
if self.lora_config != None: | ||
init_lora(model) | ||
self._post_init_complete = True | ||
return model | ||
|
||
# ensures non-lora params are frozen and lora weights are initialized | ||
def from_pretrained(*args, **kwargs): | ||
model = self._orig_causallm_pretrained(*args, **kwargs) | ||
return _model_init(model) | ||
|
||
def from_config(*args, **kwargs): | ||
model = self._orig_causallm_config(*args, **kwargs) | ||
return _model_init(model) | ||
|
||
torch.nn.Linear = OptLinearWrapper | ||
if transformers != None: | ||
transformers.AutoModelForCausalLM.from_pretrained = from_pretrained | ||
transformers.AutoModelForCausalLM.from_config = from_config | ||
|
||
def __exit__(self, *args, **kwargs): | ||
torch.nn.Linear = self._orig_nn_linear | ||
if not self._post_init_complete: | ||
print('WARNING: For some reason LoRA modules are not initialized, this is usually done automatically ' | ||
'if using transformers via (AutoModelForCausalLM from_pretrained/from_config). ' | ||
'You must call `init_lora` on each module in order to use DeepSpeed LoRA, otherwise ' | ||
'you will error out during runtime.') | ||
else: | ||
transformers.AutoModelForCausalLM.from_pretrained = self._orig_causallm_pretrained | ||
transformers.AutoModelForCausalLM.from_config = self._orig_causallm_config |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.