-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathevent_hash.f90
295 lines (255 loc) · 8.25 KB
/
event_hash.f90
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
program event_hash
use routines
use f90nautyinterf
implicit none
integer :: nevt, i, k, u, m,mm,j,ii,jj
integer :: ev_init_nat, ev_final_nat
integer, allocatable :: ev_init_typ(:), ev_final_typ(:)
real, allocatable :: ev_init_coord(:,:), ev_final_coord(:,:)
real, allocatable :: ev_init_coord_ordered(:,:), ev_final_coord_ordered(:,:)
integer, allocatable :: connect(:,:), lab(:), color(:)
integer, allocatable :: global_from_sorted_color(:), sorted_color_from_global(:)
real, allocatable :: color_cutoff(:,:)
integer :: hash_val1, hash_val2, hash_val3, kart_hash, ev_init_nb
real, dimension(3,3) :: bases
real, dimension(3) :: COM, mu, sigma
integer, dimension(3) :: basis_indeces
real, allocatable :: A(:,:), ev_init_map(:,:)
integer, allocatable :: B(:), ev_init_map_indices(:), ev_init_map_types(:)
real :: proj,proj2,n1n2,nunm,dum, dij, prob
real :: theta, phi, Rcut
real, dimension(3) :: vec
real :: neigh(12,3)
real :: theta1, theta2, theta3
integer, allocatable :: Amatrix(:,:)
integer :: nn
character(10) :: ev_tag
open(unit=444,file='events.in',status='old')
open(unit=666,file='ordered_events.dat',status='replace',action='write')
call set_color_cutoff(color_cutoff)
Rcut = 2.0
!! for each event create connectivity matrix, fill color, generate hash, get basis
call get_nevt(444,nevt)
write(666,*) nevt
!! write important discoveries to the ordered_events.dat file (unit=666)
DO i = 1,nevt
! read event
call get_ev_coord(444,i,ev_init_nat,ev_init_typ,ev_init_coord,&
ev_final_nat,ev_final_typ,ev_final_coord,prob)
write(*,*) 'ev tag', i
write(*,*) 'ev init nat', ev_init_nat
write(*,*) 'ev init typ', ev_init_typ
write(*,*) 'event init coords'
do k = 1, ev_init_nat
write(*,*) ev_init_typ(k), (ev_init_coord(k,j),j=1,3)
end do
!! write the event tag
write(ev_tag,'(I8)') i
write(666,*) '@',trim(adjustl(ev_tag))
!! write the probability of this event
write(666,*) prob
!! map the event around the first(!!) vector
call map_site(1,Rcut,ev_init_coord,ev_init_typ,ev_init_map,ev_init_map_types,ev_init_map_indices,ev_init_nb)
write(*,*) 'event map'
do k = 1,ev_init_nb
write(*,*) ev_init_typ(k), (ev_init_map(k,j),j=1,3)
end do
write(*,*)
write(*,*) 'typs before conn;',ev_init_map_types
call make_connectivity(ev_init_nat,ev_init_map,ev_init_map_types,color_cutoff,connect,lab,color)
write(*,*) 'typs after conn;',ev_init_map_types
write(*,*) "connect",size(connect,1)
do ii=1, ev_init_nat
write(*,"(15i4)") (connect(ii,jj), jj=1,ev_init_nat)
enddo
hash_val1=0
hash_val2=0
hash_val3=0
call c_ffnautyex1_sestic(ev_init_nb, connect,lab,color,ev_init_map_types, hash_val1,hash_val2,hash_val3)
kart_hash= modulo (modulo (hash_val1,104729)+ modulo(hash_val2, 15485863)+ &
modulo(hash_val3, 882377) - 1, 1299709)+1
write(*,*) "hash",kart_hash
write(*,*)
!! write the hash
write(666,*) kart_hash
write(*,*) 'canon order is'
do k=1,ev_init_nb
lab(k) = lab(k) + 1
write(*,*) lab(k)
end do
! do k = 1, ev_init_nb
! write(*,*) ev_init_map_types(k)
! end do
! call sort_to_canon(ev_init_nb,ev_init_map,ev_init_map_types,lab)
write(*,*) 'event map in canon'
do k = 1,ev_init_nb
write(*,*) ev_init_map_types(lab(k)), (ev_init_map(lab(k),j),j=1,3)
end do
write(*,*)
neigh(:,:) = 0.0
write(*,*) 'neighbour matrix'
call find_neighbour_matrix(ev_init_map,connect,lab,neigh)
do k = 1,12
write(*,*) neigh(k,:)
end do
! call get_angle(neigh(1,:),neigh(3,:),theta)
! write(*,*) 'angle neigh1, neigh3',theta
! call get_angle(neigh(3,:),neigh(1,:),theta)
! write(*,*) 'angle neigh3, neigh1',theta
write(*,*) "connect in canon"
do k=1, ev_init_nat
write(*,"(15i4)") (connect(lab(k),j), j=1,ev_init_nat)
enddo
write(*,*) 'pssbl_basis'
nn = sum(connect(1,:))
call pssbl_basis(ev_init_map,neigh,nn,lab,Amatrix)
! !! find the first basis vector: first nonzero vector in the canon order
! k = 1
! do while(.true.)
! bases(1,:) = ev_init_map(lab(k),:)
! if( norm( bases(1,:) ) .lt. 1.0e-3 ) then
! k = k+1
! else
! exit
! endif
! write(*,*) 'found basis1',k
!
! !! second basis vector is the first noncollinear vector that is connected to
! !! the first basis vector.
! !! vectors are collinear when scalar product equals the product of norms
! do ii=1, ev_init_nb
! if ( ii .eq. k ) cycle
! if ( connect( lab(k), lab(ii) ) .eq. 0 ) cycle
! !! projection and norm
! proj = inner_prod( bases(1,:), ev_init_map( lab(ii), :))
! n1n2 = norm( bases(1,:)) * norm(ev_init_map(lab(ii),:))
! if( abs( abs(proj) - n1n2 ) .gt. 1.0e-1) then
! bases(2,:) = ev_init_map( lab(ii), :)
! write(*,*) 'found basis2',ii
! endif
! if( norm(bases(2,:)) .lt. 1.0e-3 ) then
! k = k+1
! else
! exit
! endif
! end do
! end do
! !! find the first basis vector: first nonzero vector in the canon order
! k = 1
! do while(.true.)
! bases(1,:) = ev_init_map(lab(k),:)
!
! if( norm(bases(1,:)) .lt. 1.0e-3 ) then
! k = k + 1
! endif
!
! ii = 1
! do while(.true.)
! if( ii .eq. k ) ii = ii + 1
! if( connect(lab(k),lab(ii)) .eq. 0 ) ii = ii + 1
! bases(2,:) = ev_init_map(lab(ii),:)
! if( norm(bases(2,:)) .lt. 1.0e-3 ) ii = ii + 1
! proj = inner_prod( bases(1,:), bases(2,:) )
! n1n2 = norm( bases(1,:) )*norm( bases(2,:) )
! if( abs( abs(proj) - n1n2 ) .gt. 1.0e-1 ) exit
! if( ii .eq. ev_init_nb ) exit
! end do
! exit
!
! end do
! !! first basis vector for event is the first neighbor vector
! bases(1,:) = neigh(1,:)
!
! !! second basis vector is the first noncollinear neighbour
! do ii=2, ev_init_nb-1
! proj = inner_prod( bases(1,:), neigh(ii,:) )
! n1n2 = norm(bases(1,:))*norm(neigh(ii,:))
! if ( n1n2 - abs(proj) .gt. 1.0e-1 ) then
! bases(2,:) = neigh(ii,:)
! exit
! endif
! end do
!
! write(*,*) 'basis vectors'
! write(*,*) bases(1,:)
! write(*,*) bases(2,:)
!
! !! third basis vector is cross(1,2)
! bases(3,:) = cross( bases(1,:), bases(2,:) )
!
! write(*,*) bases(3,:)
!
! write(*,*)
! !! convert to that basis
! write(*,*) 'map in its basis'
! do ii =1, ev_init_nb
! call cart_to_crist(ev_init_map(ii,:), bases)
! write(*,*) ev_init_map(ii,:)
! end do
! !! get dispersion along each component of this basis
! mu(:) = 0.0
! do ii = 1, ev_init_nb
! do k=1,3
! mu(k) = mu(k) + ev_init_map(ii,k)
! end do
! end do
! mu = mu/ev_init_nb
! write(*,*) 'sum'
! write(*,*) mu(1), mu(2), mu(3)
! sigma(:) = 0.0
! do ii = 1, ev_init_nb
! do k = 1,3
! sigma(k) = sigma(k)+ (ev_init_map(ii,k) - mu(k))**2
! end do
! end do
! sigma = sqrt(sigma/(ev_init_nb))
! write(*,*) 'sigma'
! write(*,*) sigma(1), sigma(2), sigma(3)
! !! write the average value on each component
! write(666,*) mu(1), mu(2), mu(3)
! !! write the dispersion componenets for each axes
! write(666,*) sigma(1), sigma(2), sigma(3)
! !! rotate
! write(*,*) 'rotating'
! do ii =1, ev_init_nb
! call rotate(ev_init_map(ii,:),1.9635,1.9635,1.9635)
! write(*,*) ev_init_map(ii,:)
! end do
! !! get dispersion again
! mu(:) = 0.0
! do ii = 1, ev_init_nb
! do k=1,3
! mu(k) = mu(k) + ev_init_map(ii,k)
! end do
! end do
! mu = mu/ev_init_nb
! write(*,*) 'rotated sum'
! write(*,*) mu(1), mu(2), mu(3)
! sigma(:) = 0.0
! do ii = 1, ev_init_nb
! do k = 1,3
! sigma(k) = sigma(k)+ (ev_init_map(ii,k) - mu(k))**2
! end do
! end do
! sigma = sqrt(sigma/(ev_init_nb))
! write(*,*) 'rotated sigma'
! write(*,*) sigma(1), sigma(2), sigma(3)
! !! write the average value of each rotated component
! write(666,*) mu(1), mu(2), mu(3)
! !! write the rotated dispersion componenets for each axes
! write(666,*) sigma(1), sigma(2), sigma(3)
! !! rotate back
! write(*,*) 'rotating back to orig'
! do ii=1,ev_init_nb
! call rotate(ev_init_map(ii,:),-1.9635,-1.9635,-1.9635)
! write(*,*) ev_init_map(ii,:)
! end do
!
! !! numbr of atoms in map
! write(666,*) ev_init_nb
! !! initial types and positions in own basis
! do ii=1,ev_init_nb
! write(666,*) ev_init_map_types(ii),ev_init_map(ii,:)
! end do
END DO
end program event_hash