forked from ecmwf/anemoi-training
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
569316f
commit 5e850ce
Showing
1 changed file
with
98 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,98 @@ | ||
# (C) Copyright 2024 Anemoi contributors. | ||
# | ||
# This software is licensed under the terms of the Apache Licence Version 2.0 | ||
# which can be obtained at http://www.apache.org/licenses/LICENSE-2.0. | ||
# | ||
# In applying this licence, ECMWF does not waive the privileges and immunities | ||
# granted to it by virtue of its status as an intergovernmental organisation | ||
# nor does it submit to any jurisdiction. | ||
|
||
|
||
import numpy as np | ||
import pytest | ||
import torch | ||
from anemoi.graphs.generate.transforms import latlon_rad_to_cartesian | ||
from scipy.spatial import SphericalVoronoi | ||
from torch_geometric.data import HeteroData | ||
|
||
from anemoi.training.losses.nodeweights import GraphNodeAttribute | ||
from anemoi.training.losses.nodeweights import ReweightedGraphNodeAttribute | ||
|
||
|
||
def fake_graph() -> HeteroData: | ||
hdata = HeteroData() | ||
lons = torch.tensor([1.56, 3.12, 4.68, 6.24]) | ||
lats = torch.tensor([-3.12, -1.56, 1.56, 3.12]) | ||
cutout_mask = torch.tensor([False, True, False, False]).unsqueeze(1) | ||
area_weights = torch.ones(cutout_mask.shape) | ||
hdata["data"]["x"] = torch.stack((lats, lons), dim=1) | ||
hdata["data"]["cutout"] = cutout_mask | ||
hdata["data"]["area_weight"] = area_weights | ||
|
||
return hdata | ||
|
||
|
||
def fake_sv_area_weights() -> torch.Tensor: | ||
lats, lons = fake_graph()["data"]["x"][:, 0], fake_graph()["data"]["x"][:, 1] | ||
points = latlon_rad_to_cartesian((np.asarray(lats), np.asarray(lons))) | ||
sv = SphericalVoronoi(points, radius=1.0, center=[0.0, 0.0, 0.0]) | ||
area_weights = sv.calculate_areas() | ||
|
||
return torch.from_numpy(area_weights / np.max(area_weights)) | ||
|
||
|
||
def fake_reweighted_sv_area_weights(frac: float) -> torch.Tensor: | ||
weights = fake_sv_area_weights().unsqueeze(1) | ||
cutout_mask = fake_graph()["data"]["cutout"] | ||
unmasked_sum = torch.sum(weights[~cutout_mask]) | ||
weight_per_masked_node = frac / (1.0 - frac) * unmasked_sum / sum(cutout_mask) | ||
weights[cutout_mask] = weight_per_masked_node | ||
|
||
return weights.squeeze() | ||
|
||
|
||
@pytest.mark.parametrize( | ||
("target_nodes", "node_attribute", "fake_graph", "expected_weights"), | ||
[ | ||
("data", "area_weight", fake_graph(), fake_graph()["data"]["area_weight"]), | ||
("data", "non_existent_attr", fake_graph(), fake_sv_area_weights()), | ||
], | ||
) | ||
def test_grap_node_attributes( | ||
target_nodes: str, | ||
node_attribute: str, | ||
fake_graph: HeteroData, | ||
expected_weights: torch.Tensor, | ||
) -> None: | ||
weights = GraphNodeAttribute(target_nodes=target_nodes, node_attribute=node_attribute).weights(fake_graph) | ||
assert isinstance(weights, torch.Tensor) | ||
assert torch.allclose(weights, expected_weights) | ||
|
||
|
||
@pytest.mark.parametrize( | ||
("target_nodes", "node_attribute", "scaled_attribute", "weight_frac_of_total", "fake_graph", "expected_weights"), | ||
[ | ||
("data", "area_weight", "cutout", 0.0, fake_graph(), torch.tensor([1.0, 0.0, 1.0, 1.0])), | ||
("data", "area_weight", "cutout", 0.5, fake_graph(), torch.tensor([1.0, 3.0, 1.0, 1.0])), | ||
("data", "area_weight", "cutout", 0.97, fake_graph(), torch.tensor([1.0, 97.0, 1.0, 1.0])), | ||
("data", "non_existent_attr", "cutout", 0.0, fake_graph(), fake_reweighted_sv_area_weights(0.0)), | ||
("data", "non_existent_attr", "cutout", 0.5, fake_graph(), fake_reweighted_sv_area_weights(0.5)), | ||
("data", "non_existent_attr", "cutout", 0.99, fake_graph(), fake_reweighted_sv_area_weights(0.99)), | ||
], | ||
) | ||
def test_graph_node_attributes( | ||
target_nodes: str, | ||
node_attribute: str, | ||
scaled_attribute: str, | ||
weight_frac_of_total: float, | ||
fake_graph: HeteroData, | ||
expected_weights: torch.Tensor, | ||
) -> None: | ||
weights = ReweightedGraphNodeAttribute( | ||
target_nodes=target_nodes, | ||
node_attribute=node_attribute, | ||
scaled_attribute=scaled_attribute, | ||
weight_frac_of_total=weight_frac_of_total, | ||
).weights(graph_data=fake_graph) | ||
assert isinstance(weights, torch.Tensor) | ||
assert torch.allclose(weights, expected_weights) |