Skip to content

lab exercises for the spatial data analysis course at UBT in WS2021

Notifications You must be signed in to change notification settings

mengluchu/SA_lab

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

61 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

SA_lab

Tutorials and lab exercises for the "Introduction to statistical modelling for spatial data analysis" course at UBT.

  1. lab_python:

Python tutorial including basic data types and operators, containers, control-flow, comprehension, broadcasting, class (object-based modelling, inheritance, super(), magic methods), numpy, matplotlib.

  1. lab_descriptive:
  • Discriptive statistics (e.g. moment statistics, variance mean ration, data distribution, scatterplot). Dataframe data processing (pandas).

  • Spatial data exploration:

    • Spatial data visualisation (geopandas).
    • Spatial pattern analysis: Quadrant analysis and Moran's I (global and local), kernel functions.

About

lab exercises for the spatial data analysis course at UBT in WS2021

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published