We are working on producing a set of synthetic urban traffic networks and corresponding data for benchmarking and evaluation purposes.
For example usage, please see:
Convex optimization for traffic assignment
Bayesian inference for traffic assignment
Compressive sensing for traffic assignment
Also, see our contributors!
- General dependencies
- Toy networks
- Grid networks
- Waypoints
- [Grid networks in UE] (#gridnetworksue)
- General dependencies
We use Python 2.7.
scipy
ipython
matplotlib
delegate
Coming soon!
Dependencies for grid networks
networkx
Usage
python static_matrix.py --prefix '' --num_rows <# ROWS OF STREETS> \
--num_cols <# COLUMNS OF STREETS> \
--num_routes_per_od <# ROUTES BETWEEN ODS> \
--num_nonzero_routes_per_o <# ROUTES WITH NONZERO FLOW PER OD>
Example
python static_matrix.py --prefix '' --num_rows 2 --num_cols 2 \
--num_routes_per_od 3 --num_nonzero_routes_per_o 3
Example grid network
- Waypoints
Dependencies for waypoint
pyshp
Load map via Shapefile
run -i find.py
Find new roads of interest
roads = find('210',sf,shapes,verbose=True)
Generate waypoints
run -i Waypoint.py
Example waypoints
- Grid networks in UE
Dependencies for grid networks in UE
cvxopt
networkx
Running
python test_ue_solver.py
python test_path_solver.py
python test_missing.py
python test_draw.py
Coordinates for bounding box in L.A.: [-118.328299, 33.984601, -117.68132, 34.255881]
Add flow in equilibrium to recreate congestion