PyAthena is a Python DB API 2.0 (PEP 249) client for Amazon Athena.
Table of Contents:
- Python
- CPython 3.8 3.9 3.10, 3.11
$ pip install PyAthena
Extra packages:
Package | Install command | Version |
---|---|---|
SQLAlchemy | pip install PyAthena[SQLAlchemy] |
>=1.0.0 |
Pandas | pip install PyAthena[Pandas] |
>=1.3.0 |
Arrow | pip install PyAthena[Arrow] |
>=7.0.0 |
fastparquet | pip install PyAthena[fastparquet] |
>=0.4.0 |
from pyathena import connect
cursor = connect(s3_staging_dir="s3://YOUR_S3_BUCKET/path/to/",
region_name="us-west-2").cursor()
cursor.execute("SELECT * FROM one_row")
print(cursor.description)
print(cursor.fetchall())
from pyathena import connect
cursor = connect(s3_staging_dir="s3://YOUR_S3_BUCKET/path/to/",
region_name="us-west-2").cursor()
cursor.execute("SELECT * FROM many_rows LIMIT 10")
for row in cursor:
print(row)
Supported DB API paramstyle is only PyFormat
.
PyFormat
only supports named placeholders with old %
operator style and parameters specify dictionary format.
from pyathena import connect
cursor = connect(s3_staging_dir="s3://YOUR_S3_BUCKET/path/to/",
region_name="us-west-2").cursor()
cursor.execute("""
SELECT col_string FROM one_row_complex
WHERE col_string = %(param)s
""", {"param": "a string"})
print(cursor.fetchall())
if %
character is contained in your query, it must be escaped with %%
like the following:
SELECT col_string FROM one_row_complex
WHERE col_string = %(param)s OR col_string LIKE 'a%%'
Install SQLAlchemy with pip install "SQLAlchemy>=1.0.0"
or pip install PyAthena[SQLAlchemy]
.
Supported SQLAlchemy is 1.0.0 or higher.
from sqlalchemy import func, select
from sqlalchemy.engine import create_engine
from sqlalchemy.sql.schema import Table, MetaData
conn_str = "awsathena+rest://{aws_access_key_id}:{aws_secret_access_key}@athena.{region_name}.amazonaws.com:443/"\
"{schema_name}?s3_staging_dir={s3_staging_dir}"
engine = create_engine(conn_str.format(
aws_access_key_id="YOUR_ACCESS_KEY_ID",
aws_secret_access_key="YOUR_SECRET_ACCESS_KEY",
region_name="us-west-2",
schema_name="default",
s3_staging_dir="s3://YOUR_S3_BUCKET/path/to/"))
with engine.connect() as connection:
many_rows = Table("many_rows", MetaData(), autoload_with=connection)
result = connection.execute(select(func.count()).select_from(many_rows))
print(result.scalar())
The connection string has the following format:
awsathena+rest://{aws_access_key_id}:{aws_secret_access_key}@athena.{region_name}.amazonaws.com:443/{schema_name}?s3_staging_dir={s3_staging_dir}&...
If you do not specify aws_access_key_id
and aws_secret_access_key
using instance profile or boto3 configuration file:
awsathena+rest://:@athena.{region_name}.amazonaws.com:443/{schema_name}?s3_staging_dir={s3_staging_dir}&...
Dialect | Driver | Schema | Cursor |
---|---|---|---|
awsathena | Â | awsathena | DefaultCursor |
awsathena | rest | awsathena+rest | DefaultCursor |
awsathena | pandas | awsathena+pandas | PandasCursor |
awsathena | arrow | awsathena+arrow | ArrowCursor |
- location
- Type:
- str
- Description:
- Specifies the location of the underlying data in the Amazon S3 from which the table is created.
- value:
- s3://bucket/path/to/
- Example:
Table("some_table", metadata, ..., awsathena_location="s3://bucket/path/to/")
- compression
- Type:
- str
- Description:
- Specifies the compression format.
- Value:
- BZIP2
- DEFLATE
- GZIP
- LZ4
- LZO
- SNAPPY
- ZLIB
- ZSTD
- NONE|UNCOMPRESSED
- Example:
Table("some_table", metadata, ..., awsathena_compression="SNAPPY")
- row_format
- Type:
- str
- Description:
- Specifies the row format of the table and its underlying source data if applicable.
- Value:
- [DELIMITED FIELDS TERMINATED BY char [ESCAPED BY char]]
- [DELIMITED COLLECTION ITEMS TERMINATED BY char]
- [MAP KEYS TERMINATED BY char]
- [LINES TERMINATED BY char]
- [NULL DEFINED AS char]
- SERDE 'serde_name'
- Example:
Table("some_table", metadata, ..., awsathena_row_format="SERDE 'org.openx.data.jsonserde.JsonSerDe'")
- file_format
- Type:
- str
- Description:
- Specifies the file format for table data.
- Value:
- SEQUENCEFILE
- TEXTFILE
- RCFILE
- ORC
- PARQUET
- AVRO
- ION
- INPUTFORMAT input_format_classname OUTPUTFORMAT output_format_classname
- Example:
Table("some_table", metadata, ..., awsathena_file_format="PARQUET") Table("some_table", metadata, ..., awsathena_file_format="INPUTFORMAT 'org.apache.hadoop.hive.ql.io.parquet.MapredParquetInputFormat' OUTPUTFORMAT 'org.apache.hadoop.hive.ql.io.parquet.MapredParquetOutputFormat'")
- serdeproperties
- Type:
- dict[str, str]
- Description:
- Specifies one or more custom properties allowed in SerDe.
- Value:
{ "property_name": "property_value", "property_name": "property_value", ... }
- Example:
Table("some_table", metadata, ..., awsathena_serdeproperties={ "separatorChar": ",", "escapeChar": "\\\\" })
- tblproperties
- Type:
- dict[str, str]
- Description:
- Specifies custom metadata key-value pairs for the table definition in addition to predefined table properties.
- Value:
{ "property_name": "property_value", "property_name": "property_value", ... }
- Example:
Table("some_table", metadata, ..., awsathena_tblproperties={ "projection.enabled": "true", "projection.dt.type": "date", "projection.dt.range": "NOW-1YEARS,NOW", "projection.dt.format": "yyyy-MM-dd", })
- bucket_count
- Type:
- int
- Description:
- The number of buckets for bucketing your data.
- Value:
- Integer value greater than or equal to 0
- Example:
Table("some_table", metadata, ..., awsathena_bucket_count=5)
All table options can also be configured with the connection string as follows:
awsathena+rest://:@athena.us-west-2.amazonaws.com:443/default?s3_staging_dir=s3%3A%2F%2Fbucket%2Fpath%2Fto%2F&location=s3%3A%2F%2Fbucket%2Fpath%2Fto%2F&file_format=parquet&compression=snappy&...
serdeproperties
and tblproperties
must be converted to strings in the 'key'='value','key'='value'
format and url encoded.
If single quotes are included, escape them with a backslash.
For example, if you configure a projection setting 'projection.enabled'='true','projection.dt.type'='date','projection.dt.range'='NOW-1YEARS,NOW','projection.dt.format'= 'yyyy-MM-dd'
in tblproperties, it would look like this
awsathena+rest://:@athena.us-west-2.amazonaws.com:443/default?s3_staging_dir=s3%3A%2F%2Fbucket%2Fpath%2Fto%2F&tblproperties=%27projection.enabled%27%3D%27true%27%2C%27projection.dt.type%27%3D%27date%27%2C%27projection.dt.range%27%3D%27NOW-1YEARS%2CNOW%27%2C%27projection.dt.format%27%3D+%27yyyy-MM-dd%27
- partition
- Type:
- bool
- Description:
- Specifies a key for partitioning data.
- Value:
- True / False
- Example:
Column("some_column", types.String, ..., awsathena_partition=True)
- partition_transform
- Type:
- str
- Description:
- Specifies a partition transform function for partitioning data. Only has an effect for ICEBERG tables and when partition is set to true for the column.
- Value:
- year
- month
- day
- hour
- bucket
- truncate
- Example:
Column("some_column", types.Date, ..., awsathena_partition=True, awsathena_partition_transform='year')
- partition_transform_bucket_count
- Type:
- int
- Description:
- Used for N in the bucket partition transform function, partitions by hashed value mod N buckets. Only has an effect for ICEBERG tables and when partition is set to true and when the partition transform is set to 'bucket' for the column.
- Value:
- Integer value greater than or equal to 0
- Example:
Column("some_column", types.String, ..., awsathena_partition=True, awsathena_partition_transform='bucket', awsathena_partition_transform_bucket_count=5)
- partition_transform_truncate_length
- Type:
- int
- Description:
- Used for L in the truncate partition transform function, partitions by value truncated to L. Only has an effect for ICEBERG tables and when partition is set to true and when the partition transform is set to 'truncate' for the column.
- Value:
- Integer value greater than or equal to 0
- Example:
Column("some_column", types.String, ..., awsathena_partition=True, awsathena_partition_transform='truncate', awsathena_partition_transform_truncate_length=5)
- cluster
- Type:
- bool
- Description:
- Divides the data in the specified column into data subsets called buckets, with or without partitioning.
- Value:
- True / False
- Example:
Column("some_column", types.String, ..., awsathena_cluster=True)
To configure column options from the connection string, specify the column name as a comma-separated string. The options partition_transform, partition_transform_bucket_count, partition_transform_truncate_length are not supported to be configured from the connection string.
awsathena+rest://:@athena.us-west-2.amazonaws.com:443/default?partition=column1%2Ccolumn2&cluster=column1%2Ccolumn2&...
If you want to limit the column options to specific table names only, specify the table and column names connected by dots as a comma-separated string.
awsathena+rest://:@athena.us-west-2.amazonaws.com:443/default?partition=table1.column1%2Ctable1.column2&cluster=table2.column1%2Ctable2.column2&...
You can use the pandas.read_sql_query to handle the query results as a pandas.DataFrame object.
from pyathena import connect
import pandas as pd
conn = connect(s3_staging_dir="s3://YOUR_S3_BUCKET/path/to/",
region_name="us-west-2")
df = pd.read_sql_query("SELECT * FROM many_rows", conn)
print(df.head())
NOTE: Poor performance when using pandas.read_sql #222
The pyathena.pandas.util
package also has helper methods.
from pyathena import connect
from pyathena.pandas.util import as_pandas
cursor = connect(s3_staging_dir="s3://YOUR_S3_BUCKET/path/to/",
region_name="us-west-2").cursor()
cursor.execute("SELECT * FROM many_rows")
df = as_pandas(cursor)
print(df.describe())
If you want to use the query results output to S3 directly, you can use PandasCursor. This cursor fetches query results faster than the default cursor. (See benchmark results.)
You can use pandas.DataFrame.to_sql to write records stored in DataFrame to Amazon Athena. pandas.DataFrame.to_sql uses SQLAlchemy, so you need to install it.
import pandas as pd
from sqlalchemy import create_engine
conn_str = "awsathena+rest://:@athena.{region_name}.amazonaws.com:443/"\
"{schema_name}?s3_staging_dir={s3_staging_dir}&location={location}&compression=snappy"
engine = create_engine(conn_str.format(
region_name="us-west-2",
schema_name="YOUR_SCHEMA",
s3_staging_dir="s3://YOUR_S3_BUCKET/path/to/",
location="s3://YOUR_S3_BUCKET/path/to/"))
df = pd.DataFrame({"a": [1, 2, 3, 4, 5]})
df.to_sql("YOUR_TABLE", engine, schema="YOUR_SCHEMA", index=False, if_exists="replace", method="multi")
The location of the Amazon S3 table is specified by the location
parameter in the connection string.
If location
is not specified, s3_staging_dir
parameter will be used. The following rules apply.
s3://{location or s3_staging_dir}/{schema}/{table}/
The file format, row format, and compression settings are specified in the connection string, see Table options.
The pyathena.pandas.util
package also has helper methods.
import pandas as pd
from pyathena import connect
from pyathena.pandas.util import to_sql
conn = connect(s3_staging_dir="s3://YOUR_S3_BUCKET/path/to/",
region_name="us-west-2")
df = pd.DataFrame({"a": [1, 2, 3, 4, 5]})
to_sql(df, "YOUR_TABLE", conn, "s3://YOUR_S3_BUCKET/path/to/",
schema="YOUR_SCHEMA", index=False, if_exists="replace")
This helper method supports partitioning.
import pandas as pd
from datetime import date
from pyathena import connect
from pyathena.pandas.util import to_sql
conn = connect(s3_staging_dir="s3://YOUR_S3_BUCKET/path/to/",
region_name="us-west-2")
df = pd.DataFrame({
"a": [1, 2, 3, 4, 5],
"dt": [
date(2020, 1, 1), date(2020, 1, 1), date(2020, 1, 1),
date(2020, 1, 2),
date(2020, 1, 3)
],
})
to_sql(df, "YOUR_TABLE", conn, "s3://YOUR_S3_BUCKET/path/to/",
schema="YOUR_SCHEMA", partitions=["dt"])
cursor = conn.cursor()
cursor.execute("SHOW PARTITIONS YOUR_TABLE")
print(cursor.fetchall())
Conversion to Parquet and upload to S3 use ThreadPoolExecutor by default. It is also possible to use ProcessPoolExecutor.
import pandas as pd
from concurrent.futures.process import ProcessPoolExecutor
from pyathena import connect
from pyathena.pandas.util import to_sql
conn = connect(s3_staging_dir="s3://YOUR_S3_BUCKET/path/to/",
region_name="us-west-2")
df = pd.DataFrame({"a": [1, 2, 3, 4, 5]})
to_sql(df, "YOUR_TABLE", conn, "s3://YOUR_S3_BUCKET/path/to/",
schema="YOUR_SCHEMA", index=False, if_exists="replace",
chunksize=1, executor_class=ProcessPoolExecutor, max_workers=5)
DictCursor retrieve the query execution result as a dictionary type with column names and values.
You can use the DictCursor by specifying the cursor_class
with the connect method or connection object.
from pyathena import connect
from pyathena.cursor import DictCursor
cursor = connect(s3_staging_dir="s3://YOUR_S3_BUCKET/path/to/",
region_name="us-west-2",
cursor_class=DictCursor).cursor()
from pyathena.connection import Connection
from pyathena.cursor import DictCursor
cursor = Connection(s3_staging_dir="s3://YOUR_S3_BUCKET/path/to/",
region_name="us-west-2",
cursor_class=DictCursor).cursor()
It can also be used by specifying the cursor class when calling the connection object's cursor method.
from pyathena import connect
from pyathena.cursor import DictCursor
cursor = connect(s3_staging_dir="s3://YOUR_S3_BUCKET/path/to/",
region_name="us-west-2").cursor(DictCursor)
from pyathena.connection import Connection
from pyathena.cursor import DictCursor
cursor = Connection(s3_staging_dir="s3://YOUR_S3_BUCKET/path/to/",
region_name="us-west-2").cursor(DictCursor)
The basic usage is the same as the Cursor.
from pyathena.connection import Connection
from pyathena.cursor import DictCursor
cursor = Connection(s3_staging_dir="s3://YOUR_S3_BUCKET/path/to/",
region_name="us-west-2").cursor(DictCursor)
cursor.execute("SELECT * FROM many_rows LIMIT 10")
for row in cursor:
print(row["a"])
If you want to change the dictionary type (e.g., use OrderedDict), you can specify like the following.
from collections import OrderedDict
from pyathena import connect
from pyathena.cursor import DictCursor
cursor = connect(s3_staging_dir="s3://YOUR_S3_BUCKET/path/to/",
region_name="us-west-2",
cursor_class=DictCursor).cursor(dict_type=OrderedDict)
from collections import OrderedDict
from pyathena import connect
from pyathena.cursor import DictCursor
cursor = connect(s3_staging_dir="s3://YOUR_S3_BUCKET/path/to/",
region_name="us-west-2").cursor(cursor=DictCursor, dict_type=OrderedDict)
AsyncCursor is a simple implementation using the concurrent.futures package. This cursor does not follow the DB API 2.0 (PEP 249).
You can use the AsyncCursor by specifying the cursor_class
with the connect method or connection object.
from pyathena import connect
from pyathena.async_cursor import AsyncCursor
cursor = connect(s3_staging_dir="s3://YOUR_S3_BUCKET/path/to/",
region_name="us-west-2",
cursor_class=AsyncCursor).cursor()
from pyathena.connection import Connection
from pyathena.async_cursor import AsyncCursor
cursor = Connection(s3_staging_dir="s3://YOUR_S3_BUCKET/path/to/",
region_name="us-west-2",
cursor_class=AsyncCursor).cursor()
It can also be used by specifying the cursor class when calling the connection object's cursor method.
from pyathena import connect
from pyathena.async_cursor import AsyncCursor
cursor = connect(s3_staging_dir="s3://YOUR_S3_BUCKET/path/to/",
region_name="us-west-2").cursor(AsyncCursor)
from pyathena.connection import Connection
from pyathena.async_cursor import AsyncCursor
cursor = Connection(s3_staging_dir="s3://YOUR_S3_BUCKET/path/to/",
region_name="us-west-2").cursor(AsyncCursor)
The default number of workers is 5 or cpu number * 5. If you want to change the number of workers you can specify like the following.
from pyathena import connect
from pyathena.async_cursor import AsyncCursor
cursor = connect(s3_staging_dir="s3://YOUR_S3_BUCKET/path/to/",
region_name="us-west-2",
cursor_class=AsyncCursor).cursor(max_workers=10)
The execute method of the AsyncCursor returns the tuple of the query ID and the future object.
from pyathena import connect
from pyathena.async_cursor import AsyncCursor
cursor = connect(s3_staging_dir="s3://YOUR_S3_BUCKET/path/to/",
region_name="us-west-2",
cursor_class=AsyncCursor).cursor()
query_id, future = cursor.execute("SELECT * FROM many_rows")
The return value of the future object is an AthenaResultSet
object.
This object has an interface that can fetch and iterate query results similar to synchronous cursors.
It also has information on the result of query execution.
from pyathena import connect
from pyathena.async_cursor import AsyncCursor
cursor = connect(s3_staging_dir="s3://YOUR_S3_BUCKET/path/to/",
region_name="us-west-2",
cursor_class=AsyncCursor).cursor()
query_id, future = cursor.execute("SELECT * FROM many_rows")
result_set = future.result()
print(result_set.state)
print(result_set.state_change_reason)
print(result_set.completion_date_time)
print(result_set.submission_date_time)
print(result_set.data_scanned_in_bytes)
print(result_set.engine_execution_time_in_millis)
print(result_set.query_queue_time_in_millis)
print(result_set.total_execution_time_in_millis)
print(result_set.query_planning_time_in_millis)
print(result_set.service_processing_time_in_millis)
print(result_set.output_location)
print(result_set.description)
for row in result_set:
print(row)
from pyathena import connect
from pyathena.async_cursor import AsyncCursor
cursor = connect(s3_staging_dir="s3://YOUR_S3_BUCKET/path/to/",
region_name="us-west-2",
cursor_class=AsyncCursor).cursor()
query_id, future = cursor.execute("SELECT * FROM many_rows")
result_set = future.result()
print(result_set.fetchall())
A query ID is required to cancel a query with the AsyncCursor.
from pyathena import connect
from pyathena.async_cursor import AsyncCursor
cursor = connect(s3_staging_dir="s3://YOUR_S3_BUCKET/path/to/",
region_name="us-west-2",
cursor_class=AsyncCursor).cursor()
query_id, future = cursor.execute("SELECT * FROM many_rows")
cursor.cancel(query_id)
NOTE: The cancel method of the future object does not cancel the query.
AsyncDIctCursor is an AsyncCursor that can retrieve the query execution result as a dictionary type with column names and values.
You can use the DictCursor by specifying the cursor_class
with the connect method or connection object.
from pyathena import connect
from pyathena.async_cursor import AsyncDictCursor
cursor = connect(s3_staging_dir="s3://YOUR_S3_BUCKET/path/to/",
region_name="us-west-2",
cursor_class=AsyncDictCursor).cursor()
from pyathena.connection import Connection
from pyathena.async_cursor import AsyncDictCursor
cursor = Connection(s3_staging_dir="s3://YOUR_S3_BUCKET/path/to/",
region_name="us-west-2",
cursor_class=AsyncDictCursor).cursor()
It can also be used by specifying the cursor class when calling the connection object's cursor method.
from pyathena import connect
from pyathena.async_cursor import AsyncDictCursor
cursor = connect(s3_staging_dir="s3://YOUR_S3_BUCKET/path/to/",
region_name="us-west-2").cursor(AsyncDictCursor)
from pyathena.connection import Connection
from pyathena.async_cursor import AsyncDictCursor
cursor = Connection(s3_staging_dir="s3://YOUR_S3_BUCKET/path/to/",
region_name="us-west-2").cursor(AsyncDictCursor)
The basic usage is the same as the AsyncCursor.
from pyathena.connection import Connection
from pyathena.cursor import DictCursor
cursor = Connection(s3_staging_dir="s3://YOUR_S3_BUCKET/path/to/",
region_name="us-west-2").cursor(AsyncDictCursor)
query_id, future = cursor.execute("SELECT * FROM many_rows LIMIT 10")
result_set = future.result()
for row in result_set:
print(row["a"])
If you want to change the dictionary type (e.g., use OrderedDict), you can specify like the following.
from collections import OrderedDict
from pyathena import connect
from pyathena.async_cursor import AsyncDictCursor
cursor = connect(s3_staging_dir="s3://YOUR_S3_BUCKET/path/to/",
region_name="us-west-2",
cursor_class=AsyncDictCursor).cursor(dict_type=OrderedDict)
from collections import OrderedDict
from pyathena import connect
from pyathena.async_cursor import AsyncDictCursor
cursor = connect(s3_staging_dir="s3://YOUR_S3_BUCKET/path/to/",
region_name="us-west-2").cursor(cursor=AsyncDictCursor, dict_type=OrderedDict)
PandasCursor directly handles the CSV file of the query execution result output to S3. This cursor is to download the CSV file after executing the query, and then loaded into pandas.DataFrame object. Performance is better than fetching data with Cursor.
You can use the PandasCursor by specifying the cursor_class
with the connect method or connection object.
from pyathena import connect
from pyathena.pandas.cursor import PandasCursor
cursor = connect(s3_staging_dir="s3://YOUR_S3_BUCKET/path/to/",
region_name="us-west-2",
cursor_class=PandasCursor).cursor()
from pyathena.connection import Connection
from pyathena.pandas.cursor import PandasCursor
cursor = Connection(s3_staging_dir="s3://YOUR_S3_BUCKET/path/to/",
region_name="us-west-2",
cursor_class=PandasCursor).cursor()
It can also be used by specifying the cursor class when calling the connection object's cursor method.
from pyathena import connect
from pyathena.pandas.cursor import PandasCursor
cursor = connect(s3_staging_dir="s3://YOUR_S3_BUCKET/path/to/",
region_name="us-west-2").cursor(PandasCursor)
from pyathena.connection import Connection
from pyathena.pandas.cursor import PandasCursor
cursor = Connection(s3_staging_dir="s3://YOUR_S3_BUCKET/path/to/",
region_name="us-west-2").cursor(PandasCursor)
The as_pandas method returns a pandas.DataFrame object.
from pyathena import connect
from pyathena.pandas.cursor import PandasCursor
cursor = connect(s3_staging_dir="s3://YOUR_S3_BUCKET/path/to/",
region_name="us-west-2",
cursor_class=PandasCursor).cursor()
df = cursor.execute("SELECT * FROM many_rows").as_pandas()
print(df.describe())
print(df.head())
Support fetch and iterate query results.
from pyathena import connect
from pyathena.pandas.cursor import PandasCursor
cursor = connect(s3_staging_dir="s3://YOUR_S3_BUCKET/path/to/",
region_name="us-west-2",
cursor_class=PandasCursor).cursor()
cursor.execute("SELECT * FROM many_rows")
print(cursor.fetchone())
print(cursor.fetchmany())
print(cursor.fetchall())
from pyathena import connect
from pyathena.pandas.cursor import PandasCursor
cursor = connect(s3_staging_dir="s3://YOUR_S3_BUCKET/path/to/",
region_name="us-west-2",
cursor_class=PandasCursor).cursor()
cursor.execute("SELECT * FROM many_rows")
for row in cursor:
print(row)
The DATE and TIMESTAMP of Athena's data type are returned as pandas.Timestamp type.
from pyathena import connect
from pyathena.pandas.cursor import PandasCursor
cursor = connect(s3_staging_dir="s3://YOUR_S3_BUCKET/path/to/",
region_name="us-west-2",
cursor_class=PandasCursor).cursor()
cursor.execute("SELECT col_timestamp FROM one_row_complex")
print(type(cursor.fetchone()[0])) # <class 'pandas._libs.tslibs.timestamps.Timestamp'>
Execution information of the query can also be retrieved.
from pyathena import connect
from pyathena.pandas.cursor import PandasCursor
cursor = connect(s3_staging_dir="s3://YOUR_S3_BUCKET/path/to/",
region_name="us-west-2",
cursor_class=PandasCursor).cursor()
cursor.execute("SELECT * FROM many_rows")
print(cursor.state)
print(cursor.state_change_reason)
print(cursor.completion_date_time)
print(cursor.submission_date_time)
print(cursor.data_scanned_in_bytes)
print(cursor.engine_execution_time_in_millis)
print(cursor.query_queue_time_in_millis)
print(cursor.total_execution_time_in_millis)
print(cursor.query_planning_time_in_millis)
print(cursor.service_processing_time_in_millis)
print(cursor.output_location)
If you want to customize the pandas.Dataframe object dtypes and converters, create a converter class like this:
from pyathena.converter import Converter
class CustomPandasTypeConverter(Converter):
def __init__(self):
super(CustomPandasTypeConverter, self).__init__(
mappings=None,
types={
"boolean": object,
"tinyint": float,
"smallint": float,
"integer": float,
"bigint": float,
"float": float,
"real": float,
"double": float,
"decimal": float,
"char": str,
"varchar": str,
"array": str,
"map": str,
"row": str,
"varbinary": str,
"json": str,
}
)
def convert(self, type_, value):
# Not used in PandasCursor.
pass
Specify the combination of converter functions in the mappings argument and the dtypes combination in the types argument.
Then you simply specify an instance of this class in the convertes argument when creating a connection or cursor.
from pyathena import connect
from pyathena.pandas.cursor import PandasCursor
cursor = connect(s3_staging_dir="s3://YOUR_S3_BUCKET/path/to/",
region_name="us-west-2").cursor(PandasCursor, converter=CustomPandasTypeConverter())
from pyathena import connect
from pyathena.pandas.cursor import PandasCursor
cursor = connect(s3_staging_dir="s3://YOUR_S3_BUCKET/path/to/",
region_name="us-west-2",
converter=CustomPandasTypeConverter()).cursor(PandasCursor)
If the unload option is enabled, the Parquet file itself has a schema, so the conversion is done to the dtypes according to that schema,
and the mappings
and types
settings of the Converter class are not used.
If you want to change the NaN behavior of pandas.Dataframe,
you can do so by using the keep_default_na
, na_values
and quoting
arguments of the cursor object's execute method.
from pyathena import connect
from pyathena.pandas.cursor import PandasCursor
cursor = connect(s3_staging_dir="s3://YOUR_S3_BUCKET/path/to/",
region_name="us-west-2",
cursor_class=PandasCursor).cursor()
df = cursor.execute("SELECT * FROM many_rows",
keep_default_na=False,
na_values=[""]).as_pandas()
NOTE: PandasCursor handles the CSV file on memory. Pay attention to the memory capacity.
The Pandas cursor can read the CSV file for each specified number of rows by using the chunksize option. This option should reduce memory usage.
The chunksize option can be enabled by specifying an integer value in the cursor_kwargs
argument of the connect method or as an argument to the cursor method.
from pyathena import connect
from pyathena.pandas.cursor import PandasCursor
cursor = connect(s3_staging_dir="s3://YOUR_S3_BUCKET/path/to/",
region_name="us-west-2",
cursor_class=PandasCursor,
cursor_kwargs={
"chunksize": 1_000_000
}).cursor()
from pyathena import connect
from pyathena.pandas.cursor import PandasCursor
cursor = connect(s3_staging_dir="s3://YOUR_S3_BUCKET/path/to/",
region_name="us-west-2",
cursor_class=PandasCursor).cursor(chunksize=1_000_000)
It can also be specified in the execution method when executing the query.
from pyathena import connect
from pyathena.pandas.cursor import PandasCursor
cursor = connect(s3_staging_dir="s3://YOUR_S3_BUCKET/path/to/",
region_name="us-west-2",
cursor_class=PandasCursor).cursor()
cursor.execute("SELECT * FROM many_rows", chunksize=1_000_000)
SQLAlchemy allows this option to be specified in the connection string.
awsathena+pandas://:@athena.{region_name}.amazonaws.com:443/{schema_name}?s3_staging_dir={s3_staging_dir}&chunksize=1000000...
When this option is used, the object returned by the as_pandas method is a DataFrameIterator
object.
This object has exactly the same interface as the TextFileReader
object and can be handled in the same way.
from pyathena import connect
from pyathena.pandas.cursor import PandasCursor
cursor = connect(s3_staging_dir="s3://YOUR_S3_BUCKET/path/to/",
region_name="us-west-2",
cursor_class=PandasCursor).cursor()
df_iter = cursor.execute("SELECT * FROM many_rows", chunksize=1_000_000).as_pandas()
for df in df_iter:
print(df.describe())
print(df.head())
You can also concatenate them into a single pandas.DataFrame object using pandas.concat.
import pandas
from pyathena import connect
from pyathena.pandas.cursor import PandasCursor
cursor = connect(s3_staging_dir="s3://YOUR_S3_BUCKET/path/to/",
region_name="us-west-2",
cursor_class=PandasCursor).cursor()
df_iter = cursor.execute("SELECT * FROM many_rows", chunksize=1_000_000).as_pandas()
df = pandas.concat((df for df in df_iter), ignore_index=True)
You can use the get_chunk
method to retrieve a pandas.DataFrame object for each specified number of rows.
When all rows have been read, calling the get_chunk
method will raise StopIteration
.
from pyathena import connect
from pyathena.pandas.cursor import PandasCursor
cursor = connect(s3_staging_dir="s3://YOUR_S3_BUCKET/path/to/",
region_name="us-west-2",
cursor_class=PandasCursor).cursor()
df_iter = cursor.execute("SELECT * FROM many_rows LIMIT 15", chunksize=1_000_000).as_pandas()
df_iter.get_chunk(10)
df_iter.get_chunk(10)
df_iter.get_chunk(10) # raise StopIteration
PandasCursor also supports the unload option, as does ArrowCursor.
See [ArrowCursor] Unload options for more information.
The unload option can be enabled by specifying it in the cursor_kwargs
argument of the connect method or as an argument to the cursor method.
from pyathena import connect
from pyathena.pandas.cursor import PandasCursor
cursor = connect(s3_staging_dir="s3://YOUR_S3_BUCKET/path/to/",
region_name="us-west-2",
cursor_class=PandasCursor,
cursor_kwargs={
"unload": True
}).cursor()
from pyathena import connect
from pyathena.pandas.cursor import PandasCursor
cursor = connect(s3_staging_dir="s3://YOUR_S3_BUCKET/path/to/",
region_name="us-west-2",
cursor_class=PandasCursor).cursor(unload=True)
SQLAlchemy allows this option to be specified in the connection string.
awsathena+pandas://:@athena.{region_name}.amazonaws.com:443/{schema_name}?s3_staging_dir={s3_staging_dir}&unload=true...
AsyncPandasCursor is an AsyncCursor that can handle pandas.DataFrame object. This cursor directly handles the CSV of query results output to S3 in the same way as PandasCursor.
You can use the AsyncPandasCursor by specifying the cursor_class
with the connect method or connection object.
from pyathena import connect
from pyathena.pandas.async_cursor import AsyncPandasCursor
cursor = connect(s3_staging_dir="s3://YOUR_S3_BUCKET/path/to/",
region_name="us-west-2",
cursor_class=AsyncPandasCursor).cursor()
from pyathena.connection import Connection
from pyathena.pandas.async_cursor import AsyncPandasCursor
cursor = Connection(s3_staging_dir="s3://YOUR_S3_BUCKET/path/to/",
region_name="us-west-2",
cursor_class=AsyncPandasCursor).cursor()
It can also be used by specifying the cursor class when calling the connection object's cursor method.
from pyathena import connect
from pyathena.pandas.async_cursor import AsyncPandasCursor
cursor = connect(s3_staging_dir="s3://YOUR_S3_BUCKET/path/to/",
region_name="us-west-2").cursor(AsyncPandasCursor)
from pyathena.connection import Connection
from pyathena.pandas.async_cursor import AsyncPandasCursor
cursor = Connection(s3_staging_dir="s3://YOUR_S3_BUCKET/path/to/",
region_name="us-west-2").cursor(AsyncPandasCursor)
The default number of workers is 5 or cpu number * 5. If you want to change the number of workers you can specify like the following.
from pyathena import connect
from pyathena.pandas.async_cursor import AsyncPandasCursor
cursor = connect(s3_staging_dir="s3://YOUR_S3_BUCKET/path/to/",
region_name="us-west-2",
cursor_class=AsyncPandasCursor).cursor(max_workers=10)
The execute method of the AsyncPandasCursor returns the tuple of the query ID and the future object.
from pyathena import connect
from pyathena.pandas.async_cursor import AsyncPandasCursor
cursor = connect(s3_staging_dir="s3://YOUR_S3_BUCKET/path/to/",
region_name="us-west-2",
cursor_class=AsyncPandasCursor).cursor()
query_id, future = cursor.execute("SELECT * FROM many_rows")
The return value of the future object is an AthenaPandasResultSet
object.
This object has an interface similar to AthenaResultSetObject
.
from pyathena import connect
from pyathena.pandas.async_cursor import AsyncPandasCursor
cursor = connect(s3_staging_dir="s3://YOUR_S3_BUCKET/path/to/",
region_name="us-west-2",
cursor_class=AsyncPandasCursor).cursor()
query_id, future = cursor.execute("SELECT * FROM many_rows")
result_set = future.result()
print(result_set.state)
print(result_set.state_change_reason)
print(result_set.completion_date_time)
print(result_set.submission_date_time)
print(result_set.data_scanned_in_bytes)
print(result_set.engine_execution_time_in_millis)
print(result_set.query_queue_time_in_millis)
print(result_set.total_execution_time_in_millis)
print(result_set.query_planning_time_in_millis)
print(result_set.service_processing_time_in_millis)
print(result_set.output_location)
print(result_set.description)
for row in result_set:
print(row)
from pyathena import connect
from pyathena.pandas.async_cursor import AsyncPandasCursor
cursor = connect(s3_staging_dir="s3://YOUR_S3_BUCKET/path/to/",
region_name="us-west-2",
cursor_class=AsyncPandasCursor).cursor()
query_id, future = cursor.execute("SELECT * FROM many_rows")
result_set = future.result()
print(result_set.fetchall())
This object also has an as_pandas method that returns a pandas.DataFrame object similar to the PandasCursor.
from pyathena import connect
from pyathena.pandas.async_cursor import AsyncPandasCursor
cursor = connect(s3_staging_dir="s3://YOUR_S3_BUCKET/path/to/",
region_name="us-west-2",
cursor_class=AsyncPandasCursor).cursor()
query_id, future = cursor.execute("SELECT * FROM many_rows")
result_set = future.result()
df = result_set.as_pandas()
print(df.describe())
print(df.head())
The DATE and TIMESTAMP of Athena's data type are returned as pandas.Timestamp type.
from pyathena import connect
from pyathena.pandas.async_cursor import AsyncPandasCursor
cursor = connect(s3_staging_dir="s3://YOUR_S3_BUCKET/path/to/",
region_name="us-west-2",
cursor_class=AsyncPandasCursor).cursor()
query_id, future = cursor.execute("SELECT col_timestamp FROM one_row_complex")
result_set = future.result()
print(type(result_set.fetchone()[0])) # <class 'pandas._libs.tslibs.timestamps.Timestamp'>
As with AsyncCursor, you need a query ID to cancel a query.
from pyathena import connect
from pyathena.pandas.async_cursor import AsyncPandasCursor
cursor = connect(s3_staging_dir="s3://YOUR_S3_BUCKET/path/to/",
region_name="us-west-2",
cursor_class=AsyncPandasCursor).cursor()
query_id, future = cursor.execute("SELECT * FROM many_rows")
cursor.cancel(query_id)
As with PandasCursor, the unload option is also available.
from pyathena import connect
from pyathena.pandas.cursor import AsyncPandasCursor
cursor = connect(s3_staging_dir="s3://YOUR_S3_BUCKET/path/to/",
region_name="us-west-2",
cursor_class=AsyncPandasCursor,
cursor_kwargs={
"unload": True
}).cursor()
from pyathena import connect
from pyathena.pandas.cursor import AsyncPandasCursor
cursor = connect(s3_staging_dir="s3://YOUR_S3_BUCKET/path/to/",
region_name="us-west-2",
cursor_class=AsyncPandasCursor).cursor(unload=True)
ArrowCursor directly handles the CSV file of the query execution result output to S3. This cursor is to download the CSV file after executing the query, and then loaded into pyarrow.Table object. Performance is better than fetching data with Cursor.
You can use the ArrowCursor by specifying the cursor_class
with the connect method or connection object.
from pyathena import connect
from pyathena.arrow.cursor import ArrowCursor
cursor = connect(s3_staging_dir="s3://YOUR_S3_BUCKET/path/to/",
region_name="us-west-2",
cursor_class=ArrowCursor).cursor()
from pyathena.connection import Connection
from pyathena.arrow.cursor import ArrowCursor
cursor = Connection(s3_staging_dir="s3://YOUR_S3_BUCKET/path/to/",
region_name="us-west-2",
cursor_class=ArrowCursor).cursor()
It can also be used by specifying the cursor class when calling the connection object's cursor method.
from pyathena import connect
from pyathena.arrow.cursor import ArrowCursor
cursor = connect(s3_staging_dir="s3://YOUR_S3_BUCKET/path/to/",
region_name="us-west-2").cursor(ArrowCursor)
from pyathena.connection import Connection
from pyathena.arrow.cursor import ArrowCursor
cursor = Connection(s3_staging_dir="s3://YOUR_S3_BUCKET/path/to/",
region_name="us-west-2").cursor(ArrowCursor)
The as_arrow method returns a pyarrow.Table object.
from pyathena import connect
from pyathena.arrow.cursor import ArrowCursor
cursor = connect(s3_staging_dir="s3://YOUR_S3_BUCKET/path/to/",
region_name="us-west-2",
cursor_class=ArrowCursor).cursor()
table = cursor.execute("SELECT * FROM many_rows").as_arrow()
print(table)
print(table.column_names)
print(table.columns)
print(table.nbytes)
print(table.num_columns)
print(table.num_rows)
print(table.schema)
print(table.shape)
Support fetch and iterate query results.
from pyathena import connect
from pyathena.arrow.cursor import ArrowCursor
cursor = connect(s3_staging_dir="s3://YOUR_S3_BUCKET/path/to/",
region_name="us-west-2",
cursor_class=ArrowCursor).cursor()
cursor.execute("SELECT * FROM many_rows")
print(cursor.fetchone())
print(cursor.fetchmany())
print(cursor.fetchall())
from pyathena import connect
from pyathena.arrow.cursor import ArrowCursor
cursor = connect(s3_staging_dir="s3://YOUR_S3_BUCKET/path/to/",
region_name="us-west-2",
cursor_class=ArrowCursor).cursor()
cursor.execute("SELECT * FROM many_rows")
for row in cursor:
print(row)
Execution information of the query can also be retrieved.
from pyathena import connect
from pyathena.arrow.cursor import ArrowCursor
cursor = connect(s3_staging_dir="s3://YOUR_S3_BUCKET/path/to/",
region_name="us-west-2",
cursor_class=ArrowCursor).cursor()
cursor.execute("SELECT * FROM many_rows")
print(cursor.state)
print(cursor.state_change_reason)
print(cursor.completion_date_time)
print(cursor.submission_date_time)
print(cursor.data_scanned_in_bytes)
print(cursor.engine_execution_time_in_millis)
print(cursor.query_queue_time_in_millis)
print(cursor.total_execution_time_in_millis)
print(cursor.query_planning_time_in_millis)
print(cursor.service_processing_time_in_millis)
print(cursor.output_location)
If you want to customize the pyarrow.Table object types, create a converter class like this:
import pyarrow as pa
from pyathena.arrow.converter import _to_date
from pyathena.converter import Converter
class CustomArrowTypeConverter(Converter):
def __init__(self) -> None:
super(CustomArrowTypeConverter, self).__init__(
mappings={
"date": _to_date,
},
types={
"boolean": pa.bool_(),
"tinyint": pa.int8(),
"smallint": pa.int16(),
"integer": pa.int32(),
"bigint": pa.int64(),
"float": pa.float32(),
"real": pa.float64(),
"double": pa.float64(),
"char": pa.string(),
"varchar": pa.string(),
"string": pa.string(),
"timestamp": pa.timestamp("ms"),
"date": pa.timestamp("ms"),
"time": pa.string(),
"varbinary": pa.string(),
"array": pa.string(),
"map": pa.string(),
"row": pa.string(),
"decimal": pa.string(),
"json": pa.string(),
},
)
def convert(self, type_, value):
converter = self.get(type_)
return converter(value)
types
is used to explicitly specify the Arrow type when reading CSV files.
mappings
is used as a conversion method when fetching data from a cursor object.
Then you simply specify an instance of this class in the convertes argument when creating a connection or cursor.
from pyathena import connect
from pyathena.arrow.cursor import ArrowCursor
cursor = connect(s3_staging_dir="s3://YOUR_S3_BUCKET/path/to/",
region_name="us-west-2").cursor(ArrowCursor, converter=CustomArrowTypeConverter())
from pyathena import connect
from pyathena.arrow.cursor import ArrowCursor
cursor = connect(s3_staging_dir="s3://YOUR_S3_BUCKET/path/to/",
region_name="us-west-2",
converter=CustomArrowTypeConverter()).cursor(ArrowCursor)
If the unload option is enabled, the Parquet file itself has a schema, so the conversion is done to the Arrow type according to that schema,
and the types
setting of the Converter class is not used.
ArrowCursor supports the unload option. When this option is enabled,
queries with SELECT statements are automatically converted to unload statements and executed to Athena,
and the results are output in Parquet format (Snappy compressed) to s3_staging_dir
.
The cursor reads the output Parquet file directly.
The output of query results with the unload statement is faster than normal query execution. In addition, the output Parquet file is split and can be read faster than a CSV file. We recommend trying this option if you are concerned about the time it takes to execute the query and retrieve the results.
However, unload has some limitations. Please refer to the official unload documentation for more information on limitations. As per the limitations of the official documentation, the results of unload will be written to multiple files in parallel, and the contents of each file will be in sort order, but the relative order of the files to each other will not be sorted. Note that specifying ORDER BY with this option enabled does not guarantee the sort order of the data.
The unload option can be enabled by specifying it in the cursor_kwargs
argument of the connect method or as an argument to the cursor method.
from pyathena import connect
from pyathena.arrow.cursor import ArrowCursor
cursor = connect(s3_staging_dir="s3://YOUR_S3_BUCKET/path/to/",
region_name="us-west-2",
cursor_class=ArrowCursor,
cursor_kwargs={
"unload": True
}).cursor()
from pyathena import connect
from pyathena.arrow.cursor import ArrowCursor
cursor = connect(s3_staging_dir="s3://YOUR_S3_BUCKET/path/to/",
region_name="us-west-2",
cursor_class=ArrowCursor).cursor(unload=True)
SQLAlchemy allows this option to be specified in the connection string.
awsathena+arrow://:@athena.{region_name}.amazonaws.com:443/{schema_name}?s3_staging_dir={s3_staging_dir}&unload=true...
If a NOT_SUPPORTED
occurs, a type not supported by unload is included in the result of the SELECT.
Try converting to another type, such as SELECT CAST(1 AS VARCHAR) AS name
.
pyathena.error.OperationalError: NOT_SUPPORTED: Unsupported Hive type: time
In most cases of SYNTAX_ERROR
, you forgot to alias the column in the SELECT result.
Try adding an alias to the SELECTed column, such as SELECT 1 AS name
.
pyathena.error.OperationalError: SYNTAX_ERROR: line 1:1: Column name not specified at position 1
AsyncArrowCursor is an AsyncCursor that can handle pyarrow.Table object. This cursor directly handles the CSV of query results output to S3 in the same way as ArrowCursor.
You can use the AsyncArrowCursor by specifying the cursor_class
with the connect method or connection object.
from pyathena import connect
from pyathena.arrow.async_cursor import AsyncArrowCursor
cursor = connect(s3_staging_dir="s3://YOUR_S3_BUCKET/path/to/",
region_name="us-west-2",
cursor_class=AsyncArrowCursor).cursor()
from pyathena.connection import Connection
from pyathena.arrow.async_cursor import AsyncArrowCursor
cursor = Connection(s3_staging_dir="s3://YOUR_S3_BUCKET/path/to/",
region_name="us-west-2",
cursor_class=AsyncArrowCursor).cursor()
It can also be used by specifying the cursor class when calling the connection object's cursor method.
from pyathena import connect
from pyathena.arrow.async_cursor import AsyncArrowCursor
cursor = connect(s3_staging_dir="s3://YOUR_S3_BUCKET/path/to/",
region_name="us-west-2").cursor(AsyncArrowCursor)
from pyathena.connection import Connection
from pyathena.arrow.async_cursor import AsyncArrowCursor
cursor = Connection(s3_staging_dir="s3://YOUR_S3_BUCKET/path/to/",
region_name="us-west-2").cursor(AsyncArrowCursor)
The default number of workers is 5 or cpu number * 5. If you want to change the number of workers you can specify like the following.
from pyathena import connect
from pyathena.arrow.async_cursor import AsyncArrowCursor
cursor = connect(s3_staging_dir="s3://YOUR_S3_BUCKET/path/to/",
region_name="us-west-2",
cursor_class=AsyncArrowCursor).cursor(max_workers=10)
The execute method of the AsyncArrowCursor returns the tuple of the query ID and the future object.
from pyathena import connect
from pyathena.arrow.async_cursor import AsyncArrowCursor
cursor = connect(s3_staging_dir="s3://YOUR_S3_BUCKET/path/to/",
region_name="us-west-2",
cursor_class=AsyncArrowCursor).cursor()
query_id, future = cursor.execute("SELECT * FROM many_rows")
The return value of the future object is an AthenaArrowResultSet
object.
This object has an interface similar to AthenaResultSetObject
.
from pyathena import connect
from pyathena.arrow.async_cursor import AsyncArrowCursor
cursor = connect(s3_staging_dir="s3://YOUR_S3_BUCKET/path/to/",
region_name="us-west-2",
cursor_class=AsyncArrowCursor).cursor()
query_id, future = cursor.execute("SELECT * FROM many_rows")
result_set = future.result()
print(result_set.state)
print(result_set.state_change_reason)
print(result_set.completion_date_time)
print(result_set.submission_date_time)
print(result_set.data_scanned_in_bytes)
print(result_set.engine_execution_time_in_millis)
print(result_set.query_queue_time_in_millis)
print(result_set.total_execution_time_in_millis)
print(result_set.query_planning_time_in_millis)
print(result_set.service_processing_time_in_millis)
print(result_set.output_location)
print(result_set.description)
for row in result_set:
print(row)
from pyathena import connect
from pyathena.arrow.async_cursor import AsyncArrowCursor
cursor = connect(s3_staging_dir="s3://YOUR_S3_BUCKET/path/to/",
region_name="us-west-2",
cursor_class=AsyncArrowCursor).cursor()
query_id, future = cursor.execute("SELECT * FROM many_rows")
result_set = future.result()
print(result_set.fetchall())
This object also has an as_arrow method that returns a pyarrow.Table object similar to the ArrowCursor.
from pyathena import connect
from pyathena.arrow.async_cursor import AsyncArrowCursor
cursor = connect(s3_staging_dir="s3://YOUR_S3_BUCKET/path/to/",
region_name="us-west-2",
cursor_class=AsyncArrowCursor).cursor()
query_id, future = cursor.execute("SELECT * FROM many_rows")
result_set = future.result()
table = result_set.as_arrow()
print(table)
print(table.column_names)
print(table.columns)
print(table.nbytes)
print(table.num_columns)
print(table.num_rows)
print(table.schema)
print(table.shape)
As with AsyncCursor, you need a query ID to cancel a query.
from pyathena import connect
from pyathena.arrow.async_cursor import AsyncArrowCursor
cursor = connect(s3_staging_dir="s3://YOUR_S3_BUCKET/path/to/",
region_name="us-west-2",
cursor_class=AsyncArrowCursor).cursor()
query_id, future = cursor.execute("SELECT * FROM many_rows")
cursor.cancel(query_id)
As with ArrowCursor, the UNLOAD option is also available.
from pyathena import connect
from pyathena.arrow.cursor import AsyncArrowCursor
cursor = connect(s3_staging_dir="s3://YOUR_S3_BUCKET/path/to/",
region_name="us-west-2",
cursor_class=AsyncArrowCursor,
cursor_kwargs={
"unload": True
}).cursor()
from pyathena import connect
from pyathena.arrow.cursor import AsyncArrowCursor
cursor = connect(s3_staging_dir="s3://YOUR_S3_BUCKET/path/to/",
region_name="us-west-2",
cursor_class=AsyncArrowCursor).cursor(unload=True)
Athena engine version 3 allows you to reuse the results of previous queries.
It is available by specifying the arguments result_reuse_enable
and result_reuse_minutes
in the connection object.
from pyathena import connect
conn = connect(s3_staging_dir="s3://YOUR_S3_BUCKET/path/to/",
region_name="us-west-2",
work_group="YOUR_WORK_GROUP",
result_reuse_enable=True,
result_reuse_minutes=60)
You can also specify result_reuse_enable
and result_reuse_minutes
when executing a query.
from pyathena import connect
cursor = connect(s3_staging_dir="s3://YOUR_S3_BUCKET/path/to/",
region_name="us-west-2").cursor()
cursor.execute("SELECT * FROM one_row",
work_group="YOUR_WORK_GROUP",
result_reuse_enable=True,
result_reuse_minutes=60)
If the following error occurs, please use a workgroup configured with Athena engine version 3.
pyathena.error.DatabaseError: An error occurred (InvalidRequestException) when calling the StartQueryExecution operation: This functionality is not enabled in the selected engine version. Please check the engine version settings or contact AWS support for further assistance.
If for some reason you cannot use the reuse feature of Athena engine version 3, please use the Cache configuration implemented by PyAthena.
Please use the Result reuse configuration.
You can attempt to re-use the results from a previously executed query to help save time and money in the cases where your underlying data isn't changing.
Set the cache_size
or cache_expiration_time
parameter of cursor.execute()
to a number larger than 0 to enable caching.
from pyathena import connect
cursor = connect(s3_staging_dir="s3://YOUR_S3_BUCKET/path/to/",
region_name="us-west-2").cursor()
cursor.execute("SELECT * FROM one_row") # run once
print(cursor.query_id)
cursor.execute("SELECT * FROM one_row", cache_size=10) # re-use earlier results
print(cursor.query_id) # You should expect to see the same Query ID
The unit of expiration_time
is seconds. To use the results of queries executed up to one hour ago, specify like the following.
from pyathena import connect
cursor = connect(s3_staging_dir="s3://YOUR_S3_BUCKET/path/to/",
region_name="us-west-2").cursor()
cursor.execute("SELECT * FROM one_row", cache_expiration_time=3600) # Use queries executed within 1 hour as cache.
If cache_size
is not specified, the value of sys.maxsize
will be automatically set and all query results executed up to one hour ago will be checked.
Therefore, it is recommended to specify cache_expiration_time
together with cache_size
like the following.
from pyathena import connect
cursor = connect(s3_staging_dir="s3://YOUR_S3_BUCKET/path/to/",
region_name="us-west-2").cursor()
cursor.execute("SELECT * FROM one_row", cache_size=100, cache_expiration_time=3600) # Use the last 100 queries within 1 hour as cache.
Results will only be re-used if the query strings match exactly,
and the query was a DML statement (the assumption being that you always want to re-run queries like CREATE TABLE
and DROP TABLE
).
The S3 staging directory is not checked, so it's possible that the location of the results is not in your provided s3_staging_dir
.
Support Boto3 credentials.
Additional environment variable:
$ export AWS_ATHENA_S3_STAGING_DIR=s3://YOUR_S3_BUCKET/path/to/
$ export AWS_ATHENA_WORK_GROUP=YOUR_WORK_GROUP
from pyathena import connect
cursor = connect(aws_access_key_id="YOUR_ACCESS_KEY_ID",
aws_secret_access_key="YOUR_SECRET_ACCESS_KEY",
s3_staging_dir="s3://YOUR_S3_BUCKET/path/to/",
region_name="us-west-2").cursor()
from pyathena import connect
cursor = connect(aws_access_key_id="YOUR_ACCESS_KEY_ID",
aws_secret_access_key="YOUR_SECRET_ACCESS_KEY",
aws_session_token="YOUR_SESSION_TOKEN",
s3_staging_dir="s3://YOUR_S3_BUCKET/path/to/",
region_name="us-west-2").cursor()
You will be prompted to enter the MFA code. The program execution will be blocked until the MFA code is entered.
from pyathena import connect
cursor = connect(duration_seconds=3600,
serial_number="arn:aws:iam::ACCOUNT_NUMBER_WITHOUT_HYPHENS:mfa/MFA_DEVICE_ID",
s3_staging_dir="s3://YOUR_S3_BUCKET/path/to/",
region_name="us-west-2").cursor()
The shared credentials file has a default location of ~/.aws/credentials.
If you use the default profile, there is no need to specify credential information.
from pyathena import connect
cursor = connect(s3_staging_dir="s3://YOUR_S3_BUCKET/path/to/",
region_name="us-west-2").cursor()
You can also specify a profile other than the default.
from pyathena import connect
cursor = connect(profile_name="YOUR_PROFILE_NAME",
s3_staging_dir="s3://YOUR_S3_BUCKET/path/to/",
region_name="us-west-2").cursor()
from pyathena import connect
cursor = connect(role_arn="YOUR_ASSUME_ROLE_ARN",
role_session_name="PyAthena-session",
duration_seconds=3600,
s3_staging_dir="s3://YOUR_S3_BUCKET/path/to/",
region_name="us-west-2").cursor()
You will be prompted to enter the MFA code. The program execution will be blocked until the MFA code is entered.
from pyathena import connect
cursor = connect(role_arn="YOUR_ASSUME_ROLE_ARN",
role_session_name="PyAthena-session",
duration_seconds=3600,
serial_number="arn:aws:iam::ACCOUNT_NUMBER_WITHOUT_HYPHENS:mfa/MFA_DEVICE_ID",
s3_staging_dir="s3://YOUR_S3_BUCKET/path/to/",
region_name="us-west-2").cursor()
No need to specify credential information.
from pyathena import connect
cursor = connect(s3_staging_dir="s3://YOUR_S3_BUCKET/path/to/",
region_name="us-west-2").cursor()
Depends on the following environment variables:
$ export AWS_DEFAULT_REGION=us-west-2
$ export AWS_ATHENA_S3_STAGING_DIR=s3://YOUR_S3_BUCKET/path/to/
$ export AWS_ATHENA_WORKGROUP=pyathena-test
In addition, you need to create a workgroup with the Query result location set to the name specified in the AWS_ATHENA_WORKGROUP environment variable. If primary is not available as the default workgroup, specify an alternative workgroup name for the default in the environment variable AWS_ATHENA_DEFAULT_WORKGROUP.
$ export AWS_ATHENA_DEFAULT_WORKGROUP=DEFAULT_WORKGROUP
$ pip install poetry
$ poetry install -v
$ poetry run pytest
$ pip install poetry
$ poetry install -v
$ pyenv local 3.11.1 3.10.1 3.9.1 3.8.2
$ poetry run tox
GitHub Actions uses OpenID Connect (OIDC) to access AWS resources. You will need to refer to the GitHub Actions documentation to configure it.
The CloudFormation templates for creating GitHub OIDC Provider and IAM Role can be found in the aws-actions/configure-aws-credentials repository.
Under scripts/cloudformation you will also find a CloudFormation template with additional permissions and workgroup settings needed for testing.
The example of the CloudFormation execution command is the following:
$ aws --region us-west-2 \
cloudformation create-stack \
--stack-name github-actions-oidc-pyathena \
--capabilities CAPABILITY_NAMED_IAM \
--template-body file://./scripts/cloudformation/github_actions_oidc.yaml \
--parameters ParameterKey=GitHubOrg,ParameterValue=laughingman7743 \
ParameterKey=RepositoryName,ParameterValue=PyAthena \
ParameterKey=BucketName,ParameterValue=laughingman7743-athena \
ParameterKey=RoleName,ParameterValue=github-actions-oidc-pyathena-test \
ParameterKey=WorkGroupName,ParameterValue=pyathena-test
The code formatting uses black and isort.
$ make fmt
$ make chk
Many of the implementations in this library are based on PyHive, thanks for PyHive.