Skip to content

mattyred/BSGP_Automatic_Independence_Determination

 
 

Repository files navigation

Sparse Gaussian Processes Revisited: Bayesian Approaches to Inducing-Variable Approximations

>> python3 run_regression.py --help
usage: run_regression.py [-h] 
                         [--num_inducing NUM_INDUCING]
                         [--minibatch_size MINIBATCH_SIZE]
                         [--iterations ITERATIONS] 
                         [--n_layers N_LAYERS]
                         --dataset DATASET [--fold FOLD]
                         [--prior_type {determinantal,normal,strauss,uniform}]
                         [--model {bsgp}]
                         [--num_posterior_samples NUM_POSTERIOR_SAMPLES]
                         [--step_size STEP_SIZE]
                         [--precise_kernel USE_AID_KERNEL {0,1,2}]
                         [--kfold NUM_K_FOLDS]
                         [--prior_precision_type {normal, laplace+diagnormal, horseshoe+diagnormal, wishart, invwishart}]
                         [--prior_precision_select_param {L, Lambda}]
                         [--prior_laplace_b LAPLACE_B]
                         [--prior_normal_mean NORMAL_MEAN]
                         [--prior_normal_variance NORMAL_VARIANCE]
                         [--prior_horseshoe_globshrink HORSESHOE_GLOBAL_SHRINKAGE]

>> python3 run_classification.py --help
usage: [same arguments as for regression, choose a proper dataset]

Datasets

type n. d-in
BOSTON regression 506 13 https://archive.ics.uci.edu/ml/datasets/Housing
KIN8NM regression 8192 8
POWERPLANT regression 9568 4 https://archive.ics.uci.edu/dataset/294/combined+cycle+power+plant
CONCRETE regression 1030 8 https://archive.ics.uci.edu/dataset/165/concrete+compressive+strength
EEG classification 14980 14 https://archive.ics.uci.edu/dataset/264/eeg+eye+state
WILT classification 4839 5 https://archive.ics.uci.edu/dataset/285/wilt
BREAST classification 683 10 https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html
DIABETES classification 783 8

Precise Kernel

parameters log-pdf
Normal $p(\mathbf{\Lambda_{ij}}) = \mathcal{N}(\mu, \sigma^2)$ --prior_normal_mean
--prior_normal_variance
$\log C - \frac{1}{2\sigma^2}(\mathbf{\Lambda_{ij}} - \mu)^2$
Laplace $p(\mathbf{\Lambda_{ij}}) = \mathcal{L}(m,b)$ $m = 0$
--prior_laplace_b
$\log C - \frac{1}{b}||\mathbf{\Lambda_{ij}} - m||_1$
Horseshoe $p(\mathbf{\Lambda_{ij}}) = \mathcal{HS}(\tau)$ --prior_horseshoe_globshrink $\log C + \frac{1}{2\tau^2}\mathbf{\Lambda_{ij}}^2 + \log E_1(\frac{1}{2\tau^2}\mathbf{\Lambda_{ij}}^2)$
Wishart $p(\mathbf{\Lambda}) = \mathcal{W}(\mathbf{V},K)$ $K = D$
$\mathbf{V} = K^{-1}\mathbf{I}_D$
$\log C - \sum_d{\log |\mathbf{L}_{dd}|} - \frac{1}{2}\text{Tr}[K\mathbf{\Lambda}]$
InvWishart $p(\mathbf{\Lambda}) = \mathcal{IW}(\mathbf{V},K)$ $K = D$
$\mathbf{V} = \mathbf{I}_D$
$\log C - (2K + 1)\sum_d{\log |\mathbf{L}_{dd}|} - \frac{1}{2}\text{Tr}[\mathbf{V}\mathbf{\Lambda}^{-1}]$

Reference

Rossi, S., Heinonen, M., Bonilla, E., Shen, Z. & Filippone, M.. (2021). Sparse Gaussian Processes Revisited: Bayesian Approaches to Inducing-Variable Approximations. Proceedings of The 24th International Conference on Artificial Intelligence and Statistics, in Proceedings of Machine Learning Research 130:1837-1845

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 94.9%
  • Python 5.1%