>> python3 run_regression.py --help
usage: run_regression.py [-h]
[--num_inducing NUM_INDUCING]
[--minibatch_size MINIBATCH_SIZE]
[--iterations ITERATIONS]
[--n_layers N_LAYERS]
--dataset DATASET [--fold FOLD]
[--prior_type {determinantal,normal,strauss,uniform}]
[--model {bsgp}]
[--num_posterior_samples NUM_POSTERIOR_SAMPLES]
[--step_size STEP_SIZE]
[--precise_kernel USE_AID_KERNEL {0,1,2}]
[--kfold NUM_K_FOLDS]
[--prior_precision_type {normal, laplace+diagnormal, horseshoe+diagnormal, wishart, invwishart}]
[--prior_precision_select_param {L, Lambda}]
[--prior_laplace_b LAPLACE_B]
[--prior_normal_mean NORMAL_MEAN]
[--prior_normal_variance NORMAL_VARIANCE]
[--prior_horseshoe_globshrink HORSESHOE_GLOBAL_SHRINKAGE]
>> python3 run_classification.py --help
usage: [same arguments as for regression, choose a proper dataset]
type | n. | d-in | ||
---|---|---|---|---|
BOSTON | regression | 506 | 13 | https://archive.ics.uci.edu/ml/datasets/Housing |
KIN8NM | regression | 8192 | 8 | |
POWERPLANT | regression | 9568 | 4 | https://archive.ics.uci.edu/dataset/294/combined+cycle+power+plant |
CONCRETE | regression | 1030 | 8 | https://archive.ics.uci.edu/dataset/165/concrete+compressive+strength |
EEG | classification | 14980 | 14 | https://archive.ics.uci.edu/dataset/264/eeg+eye+state |
WILT | classification | 4839 | 5 | https://archive.ics.uci.edu/dataset/285/wilt |
BREAST | classification | 683 | 10 | https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html |
DIABETES | classification | 783 | 8 |
parameters | log-pdf | ||
---|---|---|---|
Normal | --prior_normal_mean --prior_normal_variance |
||
Laplace |
--prior_laplace_b |
||
Horseshoe | --prior_horseshoe_globshrink | ||
Wishart |
|
||
InvWishart |
|
Rossi, S., Heinonen, M., Bonilla, E., Shen, Z. & Filippone, M.. (2021). Sparse Gaussian Processes Revisited: Bayesian Approaches to Inducing-Variable Approximations. Proceedings of The 24th International Conference on Artificial Intelligence and Statistics, in Proceedings of Machine Learning Research 130:1837-1845