Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Stimuli can be filtered by boolean masks #54

Merged
merged 2 commits into from
Mar 8, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion .github/workflows/test-package-conda.yml
Original file line number Diff line number Diff line change
Expand Up @@ -61,7 +61,7 @@ jobs:
run: |
conda install pytest hypothesis
python setup.py build_ext --inplace
python -m pytest --nomatlab --notheano tests
python -m pytest --nomatlab --notheano --nodownload tests
- name: test build and install
shell: bash -el {0}
run: |
Expand Down
14 changes: 13 additions & 1 deletion pysaliency/datasets.py
Original file line number Diff line number Diff line change
Expand Up @@ -1170,7 +1170,13 @@ def __getitem__(self, index):
if isinstance(index, slice):
attributes = self._get_attribute_for_stimulus_subset(index)
return ObjectStimuli([self.stimulus_objects[i] for i in range(len(self))[index]], attributes=attributes)
elif isinstance(index, list):
elif isinstance(index, (list, np.ndarray)):
index = np.asarray(index)
if index.dtype == bool:
if not len(index) == len(self.stimuli):
raise ValueError(f"Boolean index has to have the same length as the stimuli list but got {len(index)} and {len(self.stimuli)}")
index = np.nonzero(index)[0]

attributes = self._get_attribute_for_stimulus_subset(index)
return ObjectStimuli([self.stimulus_objects[i] for i in index], attributes=attributes)
else:
Expand Down Expand Up @@ -1345,6 +1351,12 @@ def __getitem__(self, index):
index = list(range(len(self)))[index]

if isinstance(index, (list, np.ndarray)):
index = np.asarray(index)
if index.dtype == bool:
if not len(index) == len(self.stimuli):
raise ValueError(f"Boolean index has to have the same length as the stimuli list but got {len(index)} and {len(self.stimuli)}")
index = np.nonzero(index)[0]

filenames = [self.filenames[i] for i in index]
shapes = [self.shapes[i] for i in index]
attributes = self._get_attribute_for_stimulus_subset(index)
Expand Down
5 changes: 5 additions & 0 deletions tests/conftest.py
Original file line number Diff line number Diff line change
Expand Up @@ -14,17 +14,20 @@ def pytest_addoption(parser):
parser.addoption("--nomatlab", action="store_true", default=False, help="don't run matlab tests")
parser.addoption("--nooctave", action="store_true", default=False, help="don't run octave tests")
parser.addoption("--notheano", action="store_true", default=False, help="don't run slow theano tests")
parser.addoption("--nodownload", action="store_true", default=False, help="don't download external data")


def pytest_collection_modifyitems(config, items):
run_slow = config.getoption("--runslow")
run_nonfree = config.getoption('--run-nonfree')
no_matlab = config.getoption("--nomatlab")
no_theano = config.getoption("--notheano")
no_download = config.getoption("--nodownload")
skip_slow = pytest.mark.skip(reason="need --runslow option to run")
skip_nonfree = pytest.mark.skip(reason="need --run-nonfree option to run")
skip_matlab = pytest.mark.skip(reason="skipped because of --nomatlab")
skip_theano = pytest.mark.skip(reason="skipped because of --notheano")
skip_download = pytest.mark.skip(reason="skipped because of --nodownload")
for item in items:
if "slow" in item.keywords and not run_slow:
item.add_marker(skip_slow)
Expand All @@ -34,6 +37,8 @@ def pytest_collection_modifyitems(config, items):
item.add_marker(skip_matlab)
if "theano" in item.keywords and no_theano:
item.add_marker(skip_theano)
if "download" in item.keywords and no_download:
item.add_marker(skip_download)


@pytest.fixture(params=["matlab", "octave"])
Expand Down
3 changes: 2 additions & 1 deletion tests/external_models/test_deepgaze.py
Original file line number Diff line number Diff line change
Expand Up @@ -33,14 +33,15 @@ def fixations():
)


@pytest.mark.download
def test_deepgaze1(stimuli, fixations):
model = DeepGazeI(centerbias_model=pysaliency.UniformModel(), device='cpu')

ig = model.information_gain(stimuli, fixations)

np.testing.assert_allclose(ig, 0.9455161648442227, rtol=5e-6)


@pytest.mark.download
def test_deepgaze2e(stimuli, fixations):
model = DeepGazeIIE(centerbias_model=pysaliency.UniformModel(), device='cpu')

Expand Down
22 changes: 22 additions & 0 deletions tests/test_datasets.py
Original file line number Diff line number Diff line change
Expand Up @@ -566,6 +566,17 @@ def test_stimuli_attributes(stimuli_with_attributes, tmp_path):
assert list(np.array(stimuli_with_attributes.attributes['dva'])[[1, 2, 6]]) == partial_stimuli.attributes['dva']
assert list(np.array(stimuli_with_attributes.attributes['some_strings'])[[1, 2, 6]]) == partial_stimuli.attributes['some_strings']

mask = np.array([True, False, True, False, True, False, True, False, True, False, True, False])
with pytest.raises(ValueError):
partial_stimuli = stimuli_with_attributes[mask]

mask = np.array([True, False, True, False, True, False, True, False, True, False])
partial_stimuli = stimuli_with_attributes[mask]
assert stimuli_with_attributes.attributes.keys() == partial_stimuli.attributes.keys()
assert list(np.array(stimuli_with_attributes.attributes['dva'])[mask]) == partial_stimuli.attributes['dva']
assert list(np.array(stimuli_with_attributes.attributes['some_strings'])[mask]) == partial_stimuli.attributes['some_strings']



@pytest.fixture
def file_stimuli_with_attributes(tmpdir):
Expand Down Expand Up @@ -611,6 +622,17 @@ def test_file_stimuli_attributes(file_stimuli_with_attributes, tmp_path):
assert list(np.array(file_stimuli_with_attributes.attributes['dva'])[[1, 2, 6]]) == partial_stimuli.attributes['dva']
assert list(np.array(file_stimuli_with_attributes.attributes['some_strings'])[[1, 2, 6]]) == partial_stimuli.attributes['some_strings']

mask = np.array([True, False, True, False, True, False, True, False, True, False])
with pytest.raises(ValueError):
partial_stimuli = file_stimuli_with_attributes[mask]

mask = np.array([True, False, True, False, True, False, True, False, True, False, True, False, True, False, True, False, True, False])
partial_stimuli = file_stimuli_with_attributes[mask]

assert file_stimuli_with_attributes.attributes.keys() == partial_stimuli.attributes.keys()
assert list(np.array(file_stimuli_with_attributes.attributes['dva'])[mask]) == partial_stimuli.attributes['dva']
assert list(np.array(file_stimuli_with_attributes.attributes['some_strings'])[mask]) == partial_stimuli.attributes['some_strings']


def test_concatenate_stimuli_with_attributes(stimuli_with_attributes, file_stimuli_with_attributes):
concatenated_stimuli = pysaliency.datasets.concatenate_stimuli([stimuli_with_attributes, file_stimuli_with_attributes])
Expand Down
Loading