Skip to content

Commit

Permalink
Clean up the Require Import lists
Browse files Browse the repository at this point in the history
  • Loading branch information
pi8027 committed Jul 8, 2024
1 parent 73e068a commit fb55964
Show file tree
Hide file tree
Showing 9 changed files with 38 additions and 73 deletions.
36 changes: 16 additions & 20 deletions theories/cauchyreals.v
Original file line number Diff line number Diff line change
@@ -1,12 +1,9 @@
(* (c) Copyright 2006-2016 Microsoft Corporation and Inria. *)
(* Distributed under the terms of CeCILL-B. *)
Require Import mathcomp.ssreflect.ssreflect.
From mathcomp
Require Import ssrfun ssrbool eqtype ssrnat seq choice fintype.
From mathcomp
Require Import bigop order ssralg ssrnum ssrint rat poly polydiv polyorder.
From mathcomp
Require Import perm matrix mxpoly polyXY binomial bigenough.
From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice.
From mathcomp Require Import fintype bigop binomial order perm ssralg poly.
From mathcomp Require Import polydiv ssrnum ssrint rat matrix mxpoly polyXY.
From mathcomp Require Import bigenough polyorder.

(***************************************************************************)
(* This is a standalone construction of Cauchy reals over an arbitrary *)
Expand All @@ -15,7 +12,7 @@ Require Import perm matrix mxpoly polyXY binomial bigenough.
(* cannot be equipped with any ssreflect algebraic structure *)
(***************************************************************************)

Import Order.TTheory GRing.Theory Num.Theory Num.Def BigEnough.
Import Order.TTheory GRing.Theory Num.Theory BigEnough.

Set Implicit Arguments.
Unset Strict Implicit.
Expand Down Expand Up @@ -107,7 +104,7 @@ Lemma poly_bound_ge0 p a r : 0 <= poly_bound p a r.
Proof. by rewrite ltW // poly_bound_gt0. Qed.

Definition poly_accr_bound (p : {poly F}) (a r : F) : F
:= (maxr 1 (2%:R * r)) ^+ (size p).-1
:= (Num.max 1 (2%:R * r)) ^+ (size p).-1
* (1 + \sum_(i < (size p).-1) poly_bound p^`N(i.+1) a r).

Lemma poly_accr_bound1P p a r x y :
Expand All @@ -131,7 +128,7 @@ have := le_trans (ler_norm_sum _ _ _); apply.
rewrite ler_sum // => i _.
rewrite exprSr mulrA !normrM mulrC ler_wpM2l ?normr_ge0 //.
suff /ler_wpM2l /le_trans :
`|(y - x) ^+ i| <= maxr 1 (2%:R * r) ^+ (size p).-1.
`|(y - x) ^+ i| <= Num.max 1 (2%:R * r) ^+ (size p).-1.
apply; rewrite ?normr_ge0 // mulrC ler_wpM2l ?poly_boundP //.
by rewrite ?exprn_ge0 // le_max ler01 mulr_ge0 ?ler0n ?ltW.
case: (leP _ 1)=> hr.
Expand Down Expand Up @@ -205,7 +202,7 @@ Variable F : realFieldType.
Local Open Scope ring_scope.

Definition poly_accr_bound2 (p : {poly F}) (a r : F) : F
:= (maxr 1 (2%:R * r)) ^+ (size p).-2
:= (Num.max 1 (2%:R * r)) ^+ (size p).-2
* (1 + \sum_(i < (size p).-2) poly_bound p^`N(i.+2) a r).

Lemma poly_accr_bound2_gt0 p a r : 0 < poly_accr_bound2 p a r.
Expand Down Expand Up @@ -249,7 +246,7 @@ have := le_trans (ler_norm_sum _ _ _); apply.
rewrite ler_sum // => i _ /=; rewrite /bump /= !add1n.
rewrite normrM normrX 3!exprSr expr1 !mulrA !ler_wpM2r ?normr_ge0 //.
suff /ler_wpM2l /le_trans :
`|(y - x)| ^+ i <= maxr 1 (2%:R * r) ^+ (size p^`()).-1.
`|(y - x)| ^+ i <= Num.max 1 (2%:R * r) ^+ (size p^`()).-1.
apply; rewrite ?normr_ge0 // mulrC ler_wpM2l ?poly_boundP //.
by rewrite ?exprn_ge0 // le_max ler01 mulr_ge0 ?ler0n ?ltW.
case: (leP _ 1)=> hr.
Expand Down Expand Up @@ -341,8 +338,8 @@ by rewrite -normfV -normrM ler_normr lexx ?orbT.
Qed.

Definition merge_intervals (ar1 ar2 : F * F) :=
let l := minr (ar1.1 - ar1.2) (ar2.1 - ar2.2) in
let u := maxr (ar1.1 + ar1.2) (ar2.1 + ar2.2) in
let l := Num.min (ar1.1 - ar1.2) (ar2.1 - ar2.2) in
let u := Num.max (ar1.1 + ar1.2) (ar2.1 + ar2.2) in
((l + u) / 2%:R, (u - l) / 2%:R).
Local Notation center ar1 ar2 := ((merge_intervals ar1 ar2).1).
Local Notation radius ar1 ar2 := ((merge_intervals ar1 ar2).2).
Expand All @@ -354,7 +351,7 @@ Lemma split_interval (a1 a2 r1 r2 x : F) :
Proof.
move=> r1_gt0 r2_gt0 le_ar.
rewrite /merge_intervals /=.
set l : F := minr _ _; set u : F := maxr _ _.
set l : F := Num.min _ _; set u : F := Num.max _ _.
rewrite ler_pdivlMr ?gtr0E // -{2}[2%:R]ger0_norm ?ger0E //.
rewrite -normrM mulrBl mulfVK ?pnatr_eq0 // ler_distl.
rewrite opprB addrCA addrK (addrC (l + u)) addrA addrNK.
Expand Down Expand Up @@ -406,7 +403,7 @@ move=> [] accr2_p; last first.
by rewrite mulrC ler_wpM2r // ltW.
case: accr2_p=> [[k2 k2_gt0 hk2]] h2.
left; split; last by move=> x; rewrite split_interval // => /orP [/h1|/h2].
exists (minr k1 k2); first by rewrite lt_min k1_gt0.
exists (Num.min k1 k2); first by rewrite lt_min k1_gt0.
move=> x y neq_xy; rewrite !split_interval //.
wlog lt_xy: x y neq_xy / y < x.
move=> hwlog; have [] := ltrP y x; first exact: hwlog.
Expand Down Expand Up @@ -457,7 +454,6 @@ End monotony.

Section CauchyReals.

Local Open Scope nat_scope.
Local Open Scope creal_scope.
Local Open Scope ring_scope.

Expand Down Expand Up @@ -873,7 +869,7 @@ Notation "x - y" := (x + - y)%CR : creal_scope.
Lemma ubound_subproof (x : creal) : {b : F | b > 0 & forall i, `|x i| <= b}.
Proof.
pose_big_enough i; first set b := 1 + `|x i|.
exists (foldl maxr b [seq `|x n| | n <- iota 0 i]) => [|n].
exists (foldl Num.max b [seq `|x n| | n <- iota 0 i]) => [|n].
have : 0 < b by rewrite ltr_pwDl.
by elim: iota b => //= a l IHl b b_gt0; rewrite IHl ?lt_max ?b_gt0.
have [|le_in] := (ltnP n i).
Expand Down Expand Up @@ -1360,7 +1356,7 @@ wlog : p px_neq0 / (0 < p^`().[x])%CR.
move=> px_gt0.
pose b1 := poly_accr_bound p^`() 0 (1 + ubound x).
pose b2 := poly_accr_bound2 p 0 (1 + ubound x).
pose r : F := minr 1 (minr
pose r : F := Num.min 1 (Num.min
(diff px_gt0 / 4%:R / b1)
(diff px_gt0 / 4%:R / b2 / 2%:R)).
exists r.
Expand Down Expand Up @@ -1504,7 +1500,7 @@ by rewrite (le_trans _ (bound_poly_boundP _ 0%N _ _ _ _)) ?poly_bound_ge0.
Qed.

Definition bound_poly_accr_bound (z : creal) (q : {poly {poly F}}) (a r : F) :=
maxr 1 (2%:R * r) ^+ (sizeY q).-1 *
Num.max 1 (2%:R * r) ^+ (sizeY q).-1 *
(1 + \sum_(i < (sizeY q).-1) bound_poly_bound z q a r i).

Lemma bound_poly_accr_boundP (z : creal) i (q : {poly {poly F}}) (a r : F) :
Expand Down
12 changes: 4 additions & 8 deletions theories/complex.v
Original file line number Diff line number Diff line change
@@ -1,14 +1,10 @@
(* (c) Copyright 2006-2016 Microsoft Corporation and Inria. *)
(* Distributed under the terms of CeCILL-B. *)
From HB Require Import structures.
Require Import mathcomp.ssreflect.ssreflect.
From mathcomp
Require Import ssrfun ssrbool eqtype ssrnat seq choice fintype.
From mathcomp
Require Import bigop order ssralg ssrint div ssrnum rat poly closed_field.
From mathcomp
Require Import polyrcf matrix mxalgebra tuple mxpoly zmodp binomial realalg.
From mathcomp Require Import mxpoly.
From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div.
From mathcomp Require Import choice fintype tuple bigop binomial order ssralg.
From mathcomp Require Import zmodp poly ssrnum ssrint archimedean rat matrix.
From mathcomp Require Import mxalgebra mxpoly closed_field polyrcf realalg.

(**********************************************************************)
(* This files defines the extension R[i] of a real field R, *)
Expand Down
8 changes: 2 additions & 6 deletions theories/mxtens.v
Original file line number Diff line number Diff line change
@@ -1,17 +1,13 @@
(* (c) Copyright 2006-2016 Microsoft Corporation and Inria. *)
(* Distributed under the terms of CeCILL-B. *)
Require Import mathcomp.ssreflect.ssreflect.
From mathcomp
Require Import ssrfun ssrbool eqtype ssrnat seq choice fintype.
From mathcomp
Require Import bigop ssralg matrix zmodp div.
From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div.
From mathcomp Require Import choice fintype bigop ssralg zmodp matrix.

Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.

Import GRing.Theory.
Local Open Scope nat_scope.
Local Open Scope ring_scope.

Section ExtraBigOp.
Expand Down
11 changes: 3 additions & 8 deletions theories/ordered_qelim.v
Original file line number Diff line number Diff line change
@@ -1,14 +1,9 @@
(* (c) Copyright 2006-2016 Microsoft Corporation and Inria. *)
(* Distributed under the terms of CeCILL-B. *)
From HB Require Import structures.
Require Import mathcomp.ssreflect.ssreflect.
From mathcomp
Require Import ssrfun ssrbool eqtype ssrnat seq div choice fintype.
From mathcomp
Require Import bigop order ssralg finset fingroup zmodp.
From mathcomp
Require Import poly ssrnum.

From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div.
From mathcomp Require Import choice fintype bigop finset order fingroup.
From mathcomp Require Import ssralg zmodp poly ssrnum.

Set Implicit Arguments.
Unset Strict Implicit.
Expand Down
12 changes: 3 additions & 9 deletions theories/polyorder.v
Original file line number Diff line number Diff line change
@@ -1,15 +1,9 @@
(* (c) Copyright 2006-2016 Microsoft Corporation and Inria. *)
(* Distributed under the terms of CeCILL-B. *)
Require Import mathcomp.ssreflect.ssreflect.
From mathcomp
Require Import ssrfun ssrbool eqtype ssrnat seq choice fintype.
From mathcomp
Require Import ssralg poly ssrnum zmodp polydiv interval.
From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice.
From mathcomp Require Import fintype ssralg zmodp poly polydiv ssrnum interval.

Import GRing.Theory.
Import Num.Theory.

Import Pdiv.Idomain.
Import GRing.Theory Num.Theory Pdiv.Idomain.

Set Implicit Arguments.
Unset Strict Implicit.
Expand Down
4 changes: 1 addition & 3 deletions theories/polyrcf.v
Original file line number Diff line number Diff line change
@@ -1,7 +1,6 @@
(* (c) Copyright 2006-2016 Microsoft Corporation and Inria. *)
(* Distributed under the terms of CeCILL-B. *)
From mathcomp Require Import all_ssreflect all_algebra.
Require Import polyorder.
From mathcomp Require Import all_ssreflect all_algebra polyorder.

(****************************************************************************)
(* This files contains basic (and unformatted) theory for polynomials *)
Expand Down Expand Up @@ -36,7 +35,6 @@ Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.

Local Open Scope nat_scope.
Local Open Scope ring_scope.

Local Notation noroot p := (forall x, ~~ root p x).
Expand Down
16 changes: 4 additions & 12 deletions theories/qe_rcf.v
Original file line number Diff line number Diff line change
@@ -1,24 +1,16 @@
(* (c) Copyright 2006-2016 Microsoft Corporation and Inria. *)
(* Distributed under the terms of CeCILL-B. *)
Require Import mathcomp.ssreflect.ssreflect.
From mathcomp
Require Import ssrfun ssrbool eqtype ssrnat seq choice fintype.
From mathcomp
Require Import finfun path matrix.
From mathcomp
Require Import bigop order ssralg poly polydiv ssrnum zmodp div ssrint.
From mathcomp
Require Import polyorder polyrcf interval polyXY.
From mathcomp
Require Import qe_rcf_th ordered_qelim mxtens.
From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq path.
From mathcomp Require Import div choice fintype finfun bigop order ssralg zmodp.
From mathcomp Require Import poly polydiv ssrnum ssrint interval matrix polyXY.
From mathcomp Require Import polyorder polyrcf mxtens qe_rcf_th ordered_qelim.

Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.

Import Order.TTheory GRing.Theory Num.Theory.

Local Open Scope nat_scope.
Local Open Scope ring_scope.

Definition grab (X Y : Type) (pattern : Y -> Prop) (P : Prop -> Prop)
Expand Down
7 changes: 3 additions & 4 deletions theories/qe_rcf_th.v
Original file line number Diff line number Diff line change
@@ -1,15 +1,14 @@
(* (c) Copyright 2006-2016 Microsoft Corporation and Inria. *)
(* Distributed under the terms of CeCILL-B. *)
From mathcomp Require Import all_ssreflect all_algebra.
Require Import polyorder polyrcf mxtens.
From mathcomp Require Import polyorder polyrcf mxtens.

Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.

Import Order.TTheory GRing.Theory Num.Theory Num.Def Pdiv.Ring Pdiv.ComRing.
Import Order.TTheory GRing.Theory Num.Theory Pdiv.Ring Pdiv.ComRing.

Local Open Scope nat_scope.
Local Open Scope ring_scope.

Section extra.
Expand Down Expand Up @@ -211,7 +210,7 @@ Notation midf a b := ((a + b) / 2%:~R).

(* Constraints and Tarski queries *)

Local Notation sgp_is q s := (fun x => (sgr q.[x] == s)).
Local Notation sgp_is q s := (fun x => (Num.sg q.[x] == s)).

Definition constraints (z : seq R) (sq : seq {poly R}) (sigma : seq int) :=
(\sum_(x <- z) \prod_(i < size sq) (sgz (sq`_i).[x] == (sigma`_i)%R))%N.
Expand Down
5 changes: 2 additions & 3 deletions theories/realalg.v
Original file line number Diff line number Diff line change
@@ -1,9 +1,8 @@
(* (c) Copyright 2006-2016 Microsoft Corporation and Inria. *)
(* Distributed under the terms of CeCILL-B. *)
From HB Require Import structures.
From mathcomp Require Import all_ssreflect all_algebra all_field.
From mathcomp Require Import archimedean bigenough.
Require Import polyorder cauchyreals.
From mathcomp Require Import all_ssreflect all_algebra all_field bigenough.
From mathcomp Require Import polyorder cauchyreals.

(*************************************************************************)
(* This files constructs the real closure of an archimedian field in the *)
Expand Down

0 comments on commit fb55964

Please sign in to comment.