Skip to content

Commit

Permalink
added monoid_enriched_cat.v as the original pull request by Cyril, in…
Browse files Browse the repository at this point in the history
…conclusively modified enriched_cat.v (the version I'm working on)
  • Loading branch information
ptorrx committed Jun 21, 2023
1 parent 314c6b9 commit 67526eb
Showing 1 changed file with 84 additions and 10 deletions.
94 changes: 84 additions & 10 deletions tests/enriched_cat.v
Original file line number Diff line number Diff line change
Expand Up @@ -3,11 +3,11 @@
From HB Require Import structures.
From Coq Require Import ssreflect ssrfun.

HB.mixin Record isQuiver Obj := { hom : Obj -> Obj -> Type }.
HB.mixin Record isQuiver (Obj: Type) : Type := { hom : Obj -> Obj -> Type }.

HB.structure Definition Quiver := { Obj of isQuiver Obj }.
HB.structure Definition Quiver : Type := { Obj of isQuiver Obj }.

HB.mixin Record isMon A := {
HB.mixin Record isMon (A: Type) : Type := {
zero : A;
add : A -> A -> A;
addrA : associative add;
Expand All @@ -16,20 +16,94 @@ HB.mixin Record isMon A := {
}.

HB.structure
Definition Monoid := { A of isMon A }.
Definition Monoid : Type := { A of isMon A }.

(**)
HB.mixin Record hom_isMonT T of Quiver T :=
HB.mixin Record hom_isMon T of Quiver T :=
{ private : forall A B, isMon (@hom T A B) }.

HB.structure
Definition Monoid_enriched_quiverT :=
{ Obj of isQuiver Obj & hom_isMonT Obj }.
Definition Monoid_enriched_quiver :=
{ Obj of isQuiver Obj & hom_isMon Obj }.

(* unique projection from the axiom of Monoid_enriched_quiver *)
HB.instance Definition _ (T : Monoid_enriched_quiver.type) (A B : T) : isMon (@hom T A B) :=
@private T A B.

HB.instance Definition _ := isQuiver.Build Type (fun A B => A -> B).


(*********)

HB.mixin Record hom_isMonX T of Quiver T : Type :=
{ private : forall A B, isMon (@hom T A B) }.

HB.structure
Definition Monoid_enriched_quiverX :=
{ Obj of isQuiver Obj & hom_isMonX Obj }.

Record isQuiverS (Obj: Type) : Type := { homS : Obj -> Obj -> Type }.

Structure QuiverS := { ObjS: Type; AxS: isQuiverS ObjS }.

Definition hom_isMon_type T (X: isQuiverS T) (A B: T) : Type :=
isMon (@homS T X A B).

Record hom_isMonQ T (X: isQuiverS T) : Type :=
hiMQ { privateQ : forall (A B: T), hom_isMon_type T X A B }.

Definition my_hom_isMonQ T (X: isQuiverS T) (F: forall A B, hom_isMon_type T X A B) :
hom_isMonQ T X := hiMQ T X F.

Record Monoid_enriched_quiverQ := { ObjQ: Type; iQQ: isQuiverS ObjQ; hsM: hom_isMonQ ObjQ iQQ }.

Record hom_wrapper T (X: isQuiverS T) (Str: Type -> Type) : Type :=
{ privateW : forall (A B: T), Str (@homS T X A B) }.

(**)
Record hom_wrapperA T (Qv: Type -> Type) (hm: Qv T -> T -> T -> Type) (Str: Type -> Type) (x: Qv T) : Type :=
{ privateWA : forall (A B: T), Str (hm x A B) }.

Definition my_quiver (T: Type) : isQuiverS T.
Admitted.

Fail HB.structure
Lemma my_quiver_mon (T: Type) : forall (A B: T), isMon (@homS T (my_quiver T) A B).
Admitted.

Definition my_hom_isMon (T: Type) : hom_isMonQ T (my_quiver T) :=
my_hom_isMonQ T (my_quiver T) (my_quiver_mon T).

Definition Mixin : Type := Type -> Type.

(* write two versions of Monoid_enriched_quiver: one using hom_isMon
(a mixin, hence a record), the other one using hom_isMon_type as naked
field type. The former corresponds to the wrapped version, the latter
to the intuitive, wrapper-less version. Now the latter should agree
with the former... (broadly corresponding to 2?) *)



Lemma quiver_ok (T: Type) (Str: Type -> Type) :
forall (A B: T), @homS (my_quiver T) A B


Class wrapper (T: Type) () (P: T -> T -> Prop) { prop: forall A B: T, P A B }.

Definition wrapped_hom (T: Type) (F: isMon (@hom T A B)) := wrapper T (isMon (@hom T))


Elpi Accumulate lp:{{

pred wrapper-mixin o:mixinname, o:gref, o:mixinname.

}}.



HB.instance Definition homTypeMon (A B : Quiver.type) := isMon.Build (hom A B) (* ... *).

(*********)


HB.structure
Definition Monoid_enriched_quiver :=
{ Obj of isQuiver Obj &
(forall A B : Obj, isMon (@hom (Quiver.clone Obj _) A B)) }.
Expand Down

0 comments on commit 67526eb

Please sign in to comment.