Skip to content

Commit

Permalink
adapt to mc#1169
Browse files Browse the repository at this point in the history
  • Loading branch information
Tragicus committed Nov 4, 2024
1 parent d26b17b commit e5ce7f7
Show file tree
Hide file tree
Showing 12 changed files with 59 additions and 40 deletions.
2 changes: 1 addition & 1 deletion altreals/realseq.v
Original file line number Diff line number Diff line change
Expand Up @@ -303,7 +303,7 @@ Lemma ncvgM u v lu lv : ncvg u lu%:E -> ncvg v lv%:E ->
Proof.
move=> cu cv; pose a := u \- lu%:S; pose b := v \- lv%:S.
have eq: (u \* v) =1 (lu * lv)%:S \+ ((lu%:S \* b) \+ (a \* v)).
move=> n; rewrite {}/a {}/b /= [u n+_]addrC [(_+_)*(v n)]mulrDl.
move=> n; rewrite {}/a {}/b /= [(u + _) n]addrC [(_+_)*(v n)]mulrDl.
rewrite !addrA -[LHS]add0r; congr (_ + _); rewrite mulrDr.
by rewrite !(mulrN, mulNr) (addrCA (lu * lv)) subrr addr0 subrr.
apply/(ncvg_eq eq); rewrite -[X in X%:E]addr0; apply/ncvgD.
Expand Down
2 changes: 1 addition & 1 deletion classical/cardinality.v
Original file line number Diff line number Diff line change
Expand Up @@ -1340,7 +1340,7 @@ Section zmod.
Context (aT : Type) (rT : zmodType).
Lemma fimfun_zmod_closed : zmod_closed (@fimfun aT rT).
Proof.
split=> [|f g]; rewrite !inE/=; first exact: finite_image_cst.
split=> [|f g]; rewrite !inE/=; first exact: (finite_image_cst 0).
by move=> fA gA; apply: (finite_image11 (fun x y => x - y)).
Qed.
HB.instance Definition _ :=
Expand Down
2 changes: 1 addition & 1 deletion reals/constructive_ereal.v
Original file line number Diff line number Diff line change
Expand Up @@ -137,7 +137,7 @@ Definition er_map T T' (f : T -> T') (x : \bar T) : \bar T' :=
Lemma er_map_idfun T (x : \bar T) : er_map idfun x = x.
Proof. by case: x. Qed.

Definition fine {R : zmodType} x : R := if x is EFin v then v else 0.
Definition fine {R : zmodType} x : R := if x is EFin v then v else 0%R.

Section EqEReal.
Variable (R : eqType).
Expand Down
19 changes: 11 additions & 8 deletions theories/derive.v
Original file line number Diff line number Diff line change
Expand Up @@ -253,12 +253,12 @@ Lemma derivable_nbhs (f : V -> W) a v :
Proof.
move=> df; apply/eqaddoP => _/posnumP[e].
rewrite -nbhs_nearE nbhs_simpl /= dnbhsE; split; last first.
rewrite /at_point opprD -![(_ + _ : _ -> _) _]/(_ + _) scale0r add0r.
rewrite /at_point opprD !GRing.add_funE !GRing.opp_funE scale0r add0r.
by rewrite addrA subrr add0r normrN scale0r !normr0 mulr0.
have /eqolimP := df.
move=> /eqaddoP /(_ e%:num) /(_ [gt0 of e%:num]).
apply: filter_app; rewrite /= !near_simpl near_withinE; near=> h => hN0.
rewrite /= opprD -![(_ + _ : _ -> _) _]/(_ + _) -![(- _ : _ -> _) _]/(- _).
rewrite /= opprD !GRing.add_funE !GRing.opp_funE.
rewrite /cst /= [`|1|]normr1 mulr1 => dfv.
rewrite addrA -[X in X + _]scale1r -(@mulVf _ h) //.
rewrite mulrC -scalerA -scalerBr normrZ.
Expand All @@ -276,7 +276,7 @@ move=> df; apply/cvg_ex; exists ('D_v f a).
apply/(@eqolimP _ _ _ (dnbhs_filter_on _))/eqaddoP => _/posnumP[e].
have /eqaddoP /(_ e%:num) /(_ [gt0 of e%:num]) := df.
rewrite /= !(near_simpl, near_withinE); apply: filter_app; near=> h.
rewrite /= opprD -![(_ + _ : _ -> _) _]/(_ + _) -![(- _ : _ -> _) _]/(- _).
rewrite /= opprD !GRing.add_funE !GRing.opp_funE.
rewrite /cst /= [`|1|]normr1 mulr1 addrA => dfv hN0.
rewrite -[X in _ - X]scale1r -(@mulVf _ h) //.
rewrite -scalerA -scalerBr normrZ normfV ler_pdivrMl ?normr_gt0 //.
Expand Down Expand Up @@ -398,7 +398,7 @@ Variable R : numFieldType.
Fact dcst (V W : normedModType R) (a : W) (x : V) : continuous (0 : V -> W) /\
cst a \o shift x = cst (cst a x) + \0 +o_ 0 id.
Proof.
split; first exact: cst_continuous.
split; first exact: (@cst_continuous _ _ 0).
apply/eqaddoE; rewrite addr0 funeqE => ? /=; rewrite -[LHS]addr0; congr (_ + _).
by rewrite littleoE; last exact: littleo0_subproof.
Qed.
Expand Down Expand Up @@ -531,7 +531,8 @@ have hdf h : (f \o shift x = cst (f x) + h +o_ 0 id) ->
by apply/eqP; rewrite eq_sym addrC addr_eq0 oppo.
rewrite (hdf _ dxf).
suff /diff_locally /hdf -> : differentiable f x.
by rewrite opprD addrCA -(addrA (_ - _)) addKr oppox addox.
rewrite opprD addrCA -(addrA (_ - _)) addKr GRing.add_funE GRing.opp_funE.
by rewrite oppox addox.
apply/diffP => /=.
apply: (@getPex _ (fun (df : {linear V -> W}) => continuous df /\
forall y, f y = f (lim (nbhs x)) + df (y - lim (nbhs x))
Expand Down Expand Up @@ -576,7 +577,8 @@ Qed.
Lemma differentiable_sum n (f : 'I_n -> V -> W) (x : V) :
(forall i, differentiable (f i) x) -> differentiable (\sum_(i < n) f i) x.
Proof.
by elim/big_ind : _ => // ? ? g h ?; apply: differentiableD; [exact:g|exact:h].
elim/big_ind : _ => //[_|? ? g h ?]; first exact/(@differentiable_cst _ 0).
apply: differentiableD; [exact:g|exact:h].
Qed.

Lemma diffN (f : V -> W) x :
Expand Down Expand Up @@ -1152,7 +1154,8 @@ Global Instance is_derive_sum n (h : 'I_n -> V -> W) (x v : V)
(dh : 'I_n -> W) : (forall i, is_derive x v (h i) (dh i)) ->
is_derive x v (\sum_(i < n) h i) (\sum_(i < n) dh i).
Proof.
by elim/big_ind2 : _ => // [|] *; [exact: is_derive_cst|exact: is_deriveD].
by elim/big_ind2 : _ => // [|] *;
[exact: (@is_derive_cst _ _ _ 0)|exact: is_deriveD].
Qed.

Lemma derivable_sum n (h : 'I_n -> V -> W) (x v : V) :
Expand Down Expand Up @@ -1573,7 +1576,7 @@ have gcont : {within `[a, b], continuous g}.
move=> x; apply: continuousD _ ; first by move=>?; exact: fcont.
by apply/continuousN/continuous_subspaceT=> ?; exact: scalel_continuous.
have gaegb : g a = g b.
rewrite /g -![(_ - _ : _ -> _) _]/(_ - _).
rewrite /g !GRing.add_funE !GRing.opp_funE.
apply/eqP; rewrite -subr_eq /= opprK addrAC -addrA -scalerBl.
rewrite [_ *: _]mulrA mulrC mulrA mulVf.
by rewrite mul1r addrCA subrr addr0.
Expand Down
3 changes: 2 additions & 1 deletion theories/esum.v
Original file line number Diff line number Diff line change
Expand Up @@ -589,7 +589,8 @@ near=> n.
rewrite distrC subr0.
have -> : (C_ = A_ \- B_)%R.
apply/funext => k.
rewrite /= /A_ /C_ /B_ -sumrN -big_split/= -summable_fine_sum//.
rewrite /= /A_ /C_ /B_ GRing.add_funE GRing.opp_funE.
rewrite -sumrN -big_split/= -summable_fine_sum//.
apply eq_bigr => i Pi; rewrite -fineB//.
- by rewrite [in LHS](funeposneg f).
- by rewrite fin_num_abs (@summable_pinfty _ _ P) //; exact/summable_funepos.
Expand Down
15 changes: 9 additions & 6 deletions theories/ftc.v
Original file line number Diff line number Diff line change
Expand Up @@ -839,7 +839,8 @@ set f := fun x => if x == a then r else if x == b then l else F^`() x.
have fE : {in `]a, b[, F^`() =1 f}.
by move=> x; rewrite in_itv/= => /andP[ax xb]; rewrite /f gt_eqF// lt_eqF.
have DPGFE : {in `]a, b[, (- (PG \o F))%R^`() =1 ((G \o F) * (- f))%R}.
move=> x /[dup]xab /andP[ax xb]; rewrite derive1_comp //; last first.
move=> x /[dup]xab /andP[ax xb].
rewrite (derive1_comp (g:[email protected] R)) //; last first.
apply: diff_derivable; apply: differentiable_comp; apply/derivable1_diffP.
by case: Fab => + _ _; exact.
by case: PGFbFa => + _ _; apply; exact: decreasing_image_oo.
Expand Down Expand Up @@ -886,7 +887,8 @@ rewrite oppeD//= -(continuous_FTC2 ab _ _ DPGFE); last 2 first.
- have [/= dF rF lF] := Fab.
have := derivable_oo_continuous_bnd_within PGFbFa.
move=> /(continuous_within_itvP _ FbFa)[_ PGFb PGFa]; split => /=.
- move=> x xab; apply/derivable1_diffP; apply: differentiable_comp => //.
- move=> x xab; apply/derivable1_diffP.
apply: (differentiable_comp (g:[email protected] R)) => //.
apply: differentiable_comp; apply/derivable1_diffP.
by case: Fab => + _ _; exact.
by case: PGFbFa => + _ _; apply; exact: decreasing_image_oo.
Expand All @@ -909,7 +911,7 @@ rewrite oppeD//= -(continuous_FTC2 ab _ _ DPGFE); last 2 first.
rewrite gtr0_norm// ?subr_gt0//.
by near: t; exact: nbhs_left_ltBl.
apply: eq_integral_itv_bounded.
- rewrite mulrN; apply: measurableT_comp => //.
- rewrite mulrN; apply: (measurableT_comp (f:[email protected] R)) => //.
apply: (eq_measurable_fun ((G \o F) * F^`())%R) => //.
by move=> x; rewrite inE/= => xab; rewrite !fctE fE.
by move: mGFF'; apply: measurable_funS => //; exact: subset_itv_oo_cc.
Expand Down Expand Up @@ -994,13 +996,14 @@ have mF' : measurable_fun `]a, b[ F^`().
apply: subspace_continuous_measurable_fun => //.
by apply: continuous_in_subspaceT => x /[!inE] xab; exact: cF'.
rewrite integral_itv_bndoo//; last first.
rewrite compA -(compA G -%R) (_ : -%R \o -%R = id); last first.
rewrite (compA _ -%R) -(compA G -%R) (_ : -%R \o -%R = id); last first.
by apply/funext => y; rewrite /= opprK.
apply: measurable_funM => //; apply: measurableT_comp => //.
apply: measurable_funM => //.
apply: (measurableT_comp (f:[email protected] R)) => //.
apply: (@eq_measurable_fun _ _ _ _ _ (- F^`())%R).
move=> x /[!inE] xab; rewrite [in RHS]derive1E deriveN -?derive1E//.
by case: Fab => + _ _; apply.
exact: measurableT_comp.
exact: (measurableT_comp (f:[email protected] R)).
rewrite [in RHS]integral_itv_bndoo//; last exact: measurable_funM.
apply: eq_integral => x /[!inE] xab; rewrite !fctE !opprK derive1E deriveN.
- by rewrite opprK -derive1E.
Expand Down
8 changes: 4 additions & 4 deletions theories/landau.v
Original file line number Diff line number Diff line change
Expand Up @@ -414,7 +414,7 @@ Proof. by rewrite [RHS]littleoE. Qed.

Lemma oppox (F : filter_on T) (f : T -> V) e x :
- [o_F e of f] x = [o_F e of - [o_F e of f]] x.
Proof. by move: x; rewrite -/(- _ =1 _) {1}oppo. Qed.
Proof. by move: x; rewrite -/(- [o_F e of f] =1 _) {1}oppo. Qed.

Lemma eqadd_some_oP (F : filter_on T) (f g : T -> V) (e : T -> W) h :
f = g + [o_F e of h] -> littleo_def F (f - g) e.
Expand Down Expand Up @@ -596,7 +596,7 @@ Proof. by rewrite [RHS]bigOE. Qed.

Lemma oppOx (F : filter_on T) (f : T -> V) e x :
- [O_F e of f] x = [O_F e of - [O_F e of f]] x.
Proof. by move: x; rewrite -/(- _ =1 _) {1}oppO. Qed.
Proof. by move: x; rewrite -/(- [O_F e of f] =1 _) {1}oppO. Qed.

Lemma add_bigO_subproof (F : filter_on T) e (df dg : {O_F e}) :
bigO_def F (df \+ dg) e.
Expand All @@ -618,7 +618,7 @@ Proof. by rewrite [RHS]bigOE. Qed.
Lemma addOx (F : filter_on T) (f g: T -> V) e x :
[O_F e of f] x + [O_F e of g] x =
[O_F e of [O_F e of f] + [O_F e of g]] x.
Proof. by move: x; rewrite -/(_ + _ =1 _) {1}addO. Qed.
Proof. by move: x; rewrite -/([O_F e of f] + _ =1 _) {1}addO. Qed.

Lemma eqadd_some_OP (F : filter_on T) (f g : T -> V) (e : T -> W) h :
f = g + [O_F e of h] -> bigO_def F (f - g) e.
Expand Down Expand Up @@ -848,7 +848,7 @@ Proof. by rewrite [RHS]littleoE. Qed.
Lemma addox (F : filter_on T) (f g: T -> V) (e : _ -> W) x :
[o_F e of f] x + [o_F e of g] x =
[o_F e of [o_F e of f] + [o_F e of g]] x.
Proof. by move: x; rewrite -/(_ + _ =1 _) {1}addo. Qed.
Proof. by move: x; rewrite -/([o_F e of f] + _ =1 _) {1}addo. Qed.

(* duplicate from Section Domination *)
Hint Extern 0 (littleo_def _ _ _) => solve[apply: littleoP] : core.
Expand Down
17 changes: 10 additions & 7 deletions theories/lebesgue_integral.v
Original file line number Diff line number Diff line change
Expand Up @@ -5991,7 +5991,8 @@ Qed.
Lemma locally_integrableN D f :
locally_integrable D f -> locally_integrable D (\- f)%R.
Proof.
move=> [mf oD foo]; split => //; first exact: measurableT_comp.
move=> [mf oD foo]; split => //.
exact: (measurableT_comp (f:[email protected] R)).
by move=> K KD cK; under eq_integral do rewrite normrN; exact: foo.
Qed.

Expand Down Expand Up @@ -6482,10 +6483,10 @@ Proof.
move=> xU mU mUf cg locg; apply/eqP; rewrite eq_le; apply/andP; split.
- rewrite [leRHS](_ : _ = f^* x + (\- g)%R^* x).
apply: (lim_sup_davg_le xU) => //.
apply/(measurable_comp measurableT) => //.
apply/(measurable_comp (f:[email protected] R) measurableT) => //.
by case: locg => + _ _; exact: measurable_funS.
rewrite (@continuous_lim_sup_davg (- g)%R _ _ xU mU); first by rewrite adde0.
- apply/(measurable_comp measurableT) => //.
- apply/(measurable_comp (f:[email protected] R) measurableT) => //.
by case: locg => + _ _; apply: measurable_funS.
+ by move=> y; exact/continuousN/cg.
- rewrite [leRHS](_ : _ = ((f \- g)%R^* \+ g^*) x)//.
Expand Down Expand Up @@ -6870,8 +6871,9 @@ have HL_null n : mu (HLf_g_Be n) <= (3 / (e / 2))%:E * n.+1%:R^-1%:E.
set h := (fun x => `|(f_ k \- g_ n) x|%:E) \_ (B k).
rewrite (@eq_integral _ _ _ mu setT h)//=.
by rewrite -integral_mkcond/=; exact: ifg_ub.
move=> x _; rewrite /h restrict_EFin restrict_normr/= /g_B /f_ !patchE.
by case: ifPn => /=; [rewrite patchE => ->|rewrite subrr].
move=> x _; rewrite /h restrict_EFin restrict_normr/= /g_B /f_/=.
rewrite GRing.sub_funE !patchE.
by case: ifPn => /=; [rewrite GRing.sub_funE patchE => ->|rewrite subrr].
have fgn_null n : mu [set x | `|(f_ k \- g_B n) x|%:E >= (e / 2)%:E] <=
(e / 2)^-1%:E * n.+1%:R^-1%:E.
rewrite lee_pdivlMl ?invr_gt0 ?divr_gt0// -[X in mu X]setTI.
Expand All @@ -6883,8 +6885,9 @@ have fgn_null n : mu [set x | `|(f_ k \- g_B n) x|%:E >= (e / 2)%:E] <=
set h := (fun x => `|(f_ k \- g_ n) x|%:E) \_ (B k).
rewrite (@eq_integral _ _ _ mu setT h)//=.
by rewrite -integral_mkcond/=; exact: ifg_ub.
move=> x _; rewrite /h restrict_EFin restrict_normr/= /g_B /f_ !patchE.
by case: ifPn => /=; [rewrite patchE => ->|rewrite subrr].
move=> x _; rewrite /h restrict_EFin restrict_normr/= /g_B /f_/=.
rewrite GRing.sub_funE !patchE.
by case: ifPn => /=; [rewrite GRing.sub_funE patchE => ->|rewrite subrr].
apply/eqP; rewrite eq_le measure_ge0 andbT.
apply/lee_addgt0Pr => r r0; rewrite add0e.
have incl n : Ee `<=` B k `&` (HLf_g_Be n `|` f_g_Be n) by move=> ?; apply.
Expand Down
17 changes: 11 additions & 6 deletions theories/lebesgue_measure.v
Original file line number Diff line number Diff line change
Expand Up @@ -1001,22 +1001,27 @@ by rewrite ltrBlDr=> afg; rewrite (lt_le_trans afg)// addrC lerD2r ltW.
Qed.

Lemma measurable_funB D f g : measurable_fun D f ->
measurable_fun D g -> measurable_fun D (f \- g).
Proof. by move=> ? ?; apply: measurable_funD =>//; exact: measurableT_comp. Qed.
measurable_fun D g -> measurable_fun D (f - g).
Proof.
move=> ? ?; apply: measurable_funD =>//.
exact: (measurableT_comp (f:[email protected] R)).
Qed.

Lemma measurable_funM D f g :
measurable_fun D f -> measurable_fun D g -> measurable_fun D (f \* g).
measurable_fun D f -> measurable_fun D g -> measurable_fun D (f * g).
Proof.
move=> mf mg; rewrite (_ : (_ \* _) = (fun x => 2%:R^-1 * (f x + g x) ^+ 2)
\- (fun x => 2%:R^-1 * (f x ^+ 2)) \- (fun x => 2%:R^-1 * (g x ^+ 2))).
move=> mf mg.
rewrite (_ : (_ * _) = (fun x => 2%:R^-1 * (f x + g x) ^+ 2)
- (fun x => 2%:R^-1 * (f x ^+ 2)) - (fun x => 2%:R^-1 * (g x ^+ 2))).
apply: measurable_funB; first apply: measurable_funB.
- apply: measurableT_comp => //.
by apply: measurableT_comp (exprn_measurable _) _; exact: measurable_funD.
- apply: measurableT_comp => //.
exact: measurableT_comp (exprn_measurable _) _.
- apply: measurableT_comp => //.
exact: measurableT_comp (exprn_measurable _) _.
rewrite funeqE => x /=; rewrite -2!mulrBr sqrrD (addrC (f x ^+ 2)) -addrA.
rewrite funeqE => x /=.
rewrite !GRing.sub_funE -2!mulrBr sqrrD (addrC (f x ^+ 2)) -addrA.
rewrite -(addrA (f x * g x *+ 2)) -opprB opprK (addrC (g x ^+ 2)) addrK.
by rewrite -(mulr_natr (f x * g x)) -(mulrC 2) mulrA mulVr ?mul1r// unitfE.
Qed.
Expand Down
10 changes: 6 additions & 4 deletions theories/probability.v
Original file line number Diff line number Diff line change
Expand Up @@ -196,7 +196,7 @@ Lemma expectation_sum (X : seq {RV P >-> R}) :
(forall Xi, Xi \in X -> P.-integrable [set: T] (EFin \o Xi)) ->
'E_P[\sum_(Xi <- X) Xi] = \sum_(Xi <- X) 'E_P[Xi].
Proof.
elim: X => [|X0 X IHX] intX; first by rewrite !big_nil expectation_cst.
elim: X => [|X0 X IHX] intX; first by rewrite !big_nil (expectation_cst 0).
have intX0 : P.-integrable [set: T] (EFin \o X0).
by apply: intX; rewrite in_cons eqxx.
have {}intX Xi : Xi \in X -> P.-integrable [set: T] (EFin \o Xi).
Expand Down Expand Up @@ -230,7 +230,9 @@ have ? : 'E_P[X] \is a fin_num by rewrite fin_num_abs// integrable_expectation.
have ? : 'E_P[Y] \is a fin_num by rewrite fin_num_abs// integrable_expectation.
rewrite unlock [X in 'E_P[X]](_ : _ = (X \* Y \- fine 'E_P[X] \o* Y
\- fine 'E_P[Y] \o* X \+ fine ('E_P[X] * 'E_P[Y]) \o* cst 1)%R); last first.
apply/funeqP => x /=; rewrite mulrDr !mulrDl/= mul1r fineM// mulrNN addrA.
apply/funeqP => x /=.
rewrite -[LHS]/((_ \* _)%R x)/= !GRing.sub_funE/= GRing.sub_funE.
rewrite mulrDr !mulrDl/= mul1r fineM// mulrNN addrA.
by rewrite mulrN mulNr [Z in (X x * Y x - Z)%R]mulrC.
have ? : P.-integrable [set: T] (EFin \o (X \* Y \- fine 'E_P[X] \o* Y)%R).
by rewrite compreBr ?integrableB// compre_scale ?integrableZl.
Expand Down Expand Up @@ -459,7 +461,7 @@ rewrite varianceD/= ?varianceN ?covarianceNr ?muleN//.
- by rewrite mulrN compreN ?integrableN.
Qed.

Lemma varianceD_cst_l c (X : {RV P >-> R}) :
Lemma varianceD_cst_l (c : R) (X : {RV P >-> R}) :
P.-integrable setT (EFin \o X) -> P.-integrable setT (EFin \o (X ^+ 2)%R) ->
'V_P[(cst c \+ X)%R] = 'V_P[X].
Proof.
Expand All @@ -480,7 +482,7 @@ have -> : (X \+ cst c = cst c \+ X)%R by apply/funeqP => x /=; rewrite addrC.
exact: varianceD_cst_l.
Qed.

Lemma varianceB_cst_l c (X : {RV P >-> R}) :
Lemma varianceB_cst_l (c : R) (X : {RV P >-> R}) :
P.-integrable setT (EFin \o X) -> P.-integrable setT (EFin \o (X ^+ 2)%R) ->
'V_P[(cst c \- X)%R] = 'V_P[X].
Proof.
Expand Down
3 changes: 2 additions & 1 deletion theories/realfun.v
Original file line number Diff line number Diff line change
Expand Up @@ -2368,7 +2368,8 @@ have ffin: TV a x f \is a fin_num.
have Nffin : TV a x (\- f) \is a fin_num.
apply/bounded_variationP => //; apply/bounded_variationN.
exact: (bounded_variationl ax xb).
rewrite /pos_tv /neg_tv /= total_variationN -fineB -?muleBl // ?fineM //.
rewrite /pos_tv /neg_tv /= !GRing.add_funE !GRing.opp_funE/=.
rewrite total_variationN -fineB -?muleBl // ?fineM //.
- rewrite addeAC oppeD //= ?fin_num_adde_defl //.
by rewrite addeA subee // add0e -EFinD //= opprK mulrDl -splitr.
- by rewrite fin_numB ?fin_numD ?ffin; apply/andP; split.
Expand Down
1 change: 1 addition & 0 deletions theories/showcase/summability.v
Original file line number Diff line number Diff line change
Expand Up @@ -15,6 +15,7 @@ Unset Strict Implicit.
Unset Printing Implicit Defensive.
Import GRing.Theory Num.Def Num.Theory.

Local Open Scope ring_scope.
Local Open Scope classical_set_scope.

From mathcomp Require fintype bigop finmap.
Expand Down

0 comments on commit e5ce7f7

Please sign in to comment.