Skip to content

Commit

Permalink
gauss integral
Browse files Browse the repository at this point in the history
Co-authored-by: IshiguroYoshihiro <[email protected]>
  • Loading branch information
affeldt-aist and IshiguroYoshihiro committed Dec 18, 2024
1 parent f1a6540 commit 280230e
Show file tree
Hide file tree
Showing 8 changed files with 550 additions and 3 deletions.
21 changes: 21 additions & 0 deletions CHANGELOG_UNRELEASED.md
Original file line number Diff line number Diff line change
Expand Up @@ -49,6 +49,27 @@

- in `ftc.v`:
+ lemmas `differentiation_under_integral`, `derivable_under_integral`
+ definition `partial1`, notation `'d1`

- in `real_interval.v`:
+ lemma `itv_bnd_infty_bigcup0S`

- in `lebesgue_integral.v`:
+ lemma `ge0_cvg_integral`

- in `trigo.v`:
+ lemma `derivable_atan`

- new file `gauss_integral.v`:
+ definition `oneDsqr`
+ lemmas `oneDsqr_gt0`, `oneDsqr_ge0`, `oneDsqr_ge1`, `oneDsqr_neq0`,
`oneDsqrV_le1`, `continuous_oneDsqr`, `continuous_oneDsqrV`,
`integral01_atan`
+ definition `gauss`
+ lemmas `gauss_ge0`, `gauss_le1`, `cvg_gauss`, `measurable_gauss`,
`continuous_gauss`
+ module `gauss_integral_proof`
+ lemma `integral0y_gauss_pi2`

### Changed

Expand Down
1 change: 1 addition & 0 deletions _CoqProject
Original file line number Diff line number Diff line change
Expand Up @@ -89,6 +89,7 @@ theories/probability.v
theories/convex.v
theories/charge.v
theories/kernel.v
theories/gauss_integral.v
theories/showcase/summability.v
analysis_stdlib/Rstruct_topology.v
analysis_stdlib/showcase/uniform_bigO.v
11 changes: 11 additions & 0 deletions reals/real_interval.v
Original file line number Diff line number Diff line change
Expand Up @@ -302,6 +302,17 @@ rewrite natr_absz ger0_norm ?ceil_ge//.
by rewrite -(ceil0 R) ceil_le// subr_ge0 (lteifW xy).
Qed.

Lemma itv_bnd_infty_bigcup0S (R : realType) :
`[0%R, +oo[%classic = \bigcup_i `[0%R, i.+1%:R]%classic :> set R.
Proof.
rewrite eqEsubset; split; last first.
by move=> /= x [n _]/=; rewrite !in_itv/= => /andP[->].
rewrite itv_bnd_infty_bigcup => z [i _ /= zi].
exists i => //=.
apply: subset_itvl zi.
by rewrite bnd_simp/= add0r ler_nat.
Qed.

Lemma itv_infty_bnd_bigcup (R : realType) b (x : R) :
[set` Interval -oo%O (BSide b x)] =
\bigcup_i [set` Interval (BLeft (x - i%:R)) (BSide b x)].
Expand Down
1 change: 1 addition & 0 deletions theories/Make
Original file line number Diff line number Diff line change
Expand Up @@ -56,5 +56,6 @@ lebesgue_stieltjes_measure.v
convex.v
charge.v
kernel.v
gauss_integral.v
all_analysis.v
showcase/summability.v
9 changes: 6 additions & 3 deletions theories/ftc.v
Original file line number Diff line number Diff line change
Expand Up @@ -16,10 +16,14 @@ From mathcomp Require Import lebesgue_integral derive charge.
(* for the Lebesgue integral. We derive from this theorem a corollary to *)
(* compute the definite integral of continuous functions. *)
(* *)
(* 'd1 f == first partial derivative of f *)
(* f has type R -> T -> R for R : realType *)
(* parameterized_integral mu a x f := \int[mu]_(t \in `[a, x] f t) *)
(* *)
(******************************************************************************)

Reserved Notation "'d1 f" (at level 10, f at next level, format "''d1' f").

Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.
Expand All @@ -31,9 +35,7 @@ Local Open Scope ring_scope.

Section differentiation_under_integral.

Reserved Notation "'d1 f" (at level 10, f at next level, format "''d1' f").

Let partial1 {R : realType} {T : Type} (f : R -> T -> R) y : R -> R :=
Definition partial1 {R : realType} {T : Type} (f : R -> T -> R) y : R -> R :=
(f ^~ y)^`().

Local Notation "'d1 f" := (partial1 f).
Expand Down Expand Up @@ -199,6 +201,7 @@ exact: cvg_differentiation_under_integral.
Qed.

End differentiation_under_integral.
Notation "'d1 f" := (partial1 f).

Section FTC.
Context {R : realType}.
Expand Down
Loading

0 comments on commit 280230e

Please sign in to comment.