-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgmm_em.py
167 lines (127 loc) · 4.04 KB
/
gmm_em.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import multivariate_normal
import random
#initilization of means, covariances and mixing coefficients
#make sure the determinants
def init_em_params(data,num_clusters):
num_dim=len(data[0])
means=[]
for i in range(num_clusters):
index=random.randint(0,len(data)-1)
means.append(data[index])
means=np.array(means)
covs=[]
for k in range(num_clusters):
cov=np.zeros(shape=(num_dim,num_dim))
for j in range(num_dim):
cov[j][j]=float(random.randint(1,80))/80
covs.append(cov)
mixing_coeffs=np.random.random(num_clusters)
mixing_coeffs /= mixing_coeffs.sum()
return means,covs,mixing_coeffs
def log_likelihood(data,means,covs,mixing_coeffs):
ll=0
num_clusters = len(mixing_coeffs)
for i in range(len(data)):
sum_resp=0
for k in range(num_clusters):
p=multivariate_normal.pdf([data[i]], mean=means[k],cov=covs[k]);
sum_resp+=mixing_coeffs[k]*p
ll+=np.log(sum_resp)
return ll
def update_means(data,resp,N_K,num_data,num_clusters):
num_dim=len(data[0])
means = [np.zeros(len(data[0]))] * num_clusters
for k in range(num_clusters):
sum_x=np.zeros(num_dim)
for i in range(num_data):
sum_x+=resp[i,k]*data[i]
means[k]=sum_x/N_K[k]
return means
def update_covariances(data,means,resp,N_K,num_data,num_clusters):
num_dim=len(data[0])
covs= [np.zeros((num_dim,num_dim))] * num_clusters
for k in range(num_clusters):
sum_k=np.zeros((num_dim,num_dim))
for i in range(num_data):
x=data[i]-means[k]
x=resp[i,k]*np.outer(x,x)
sum_k+=x
covs[k]=sum_k/N_K[k]
#this commented portion is for tied covariances
# sum_cov=np.sum(covs, axis=0)/num_clusters
# tied_covs=[sum_cov]*num_clusters
# return tied_covs
return covs
def update_mixing_coefficient(N_K,num_data,num_clusters):
mixing_coeffs=np.zeros(num_clusters)
for k in range(num_clusters):
mixing_coeffs[k]=N_K[k]/num_data
return mixing_coeffs
def e_step(data,means,covs,mixing_coeffs):
num_data = len(data)
num_clusters = len(mixing_coeffs)
resp = np.zeros((num_data, num_clusters))
for i in range(num_data):
for k in range(num_clusters):
p=multivariate_normal.pdf([data[i]], mean=means[k],cov=covs[k]);
resp[i,k]=mixing_coeffs[k]*p
row_sums = resp.sum(axis=1)[:, np.newaxis]
resp = resp / row_sums
return resp
def m_step(data,resp):
num_clusters=len(resp[0])
num_data=len(data)
N_K=np.sum(resp, axis=0)
means=update_means(data,resp,N_K,num_data,num_clusters)
covs=update_covariances(data,means,resp,N_K,num_data,num_clusters)
mixing_coeffs=update_mixing_coefficient(N_K,num_data,num_clusters)
return means,covs,mixing_coeffs
def main():
data=np.loadtxt("points.dat")
training_data=data[0:899]
dev_data=data[900:999]
maxiter=100
thresh=1e-6
K=list(range(2,3))
all_t_ll=[]
all_d_ll=[]
#run for different clusters
for num_clusters in K:
means,covs,mixing_coeffs=init_em_params(training_data,num_clusters)
training_ll=[]
dev_ll=[]
prev_t_ll=-100000000
for itr in range(maxiter):
resp=e_step(training_data,means,covs,mixing_coeffs)
means,covs,mixing_coeffs=m_step(training_data,resp)
t_ll=log_likelihood(training_data,means,covs,mixing_coeffs)
training_ll.append(t_ll)
d_ll=log_likelihood(dev_data,means,covs,mixing_coeffs)
dev_ll.append(d_ll)
# if the cnahge is less than threshhold stopiteration (converges)
delta=np.absolute(t_ll - prev_t_ll)
if delta < thresh and t_ll > -np.inf:
break
prev_t_ll=t_ll
all_t_ll.append(training_ll)
all_d_ll.append(dev_ll)
legend=[]
for i in range(len(all_t_ll)):
plt.plot(all_t_ll[i],linestyle='--', marker='.')
legend.append('k='+str(i+2))
plt.ylabel('log likelihood in training data (diff num of mixtures)')
plt.xlabel('iteration')
plt.legend(legend, loc='lower right')
plt.show()
legend=[]
for i in range(len(all_d_ll)):
plt.plot(all_d_ll[i],linestyle='--', marker='.')
legend.append('k='+str(i+2))
plt.ylabel('log likelihood in dev data (diff num of mixtures)')
plt.xlabel('iteration')
plt.legend(legend, loc='lower right')
plt.show()
if __name__ == '__main__':
main()