Skip to content

Experiment code associated with our JMD paper: "Design Manifolds Capture the Intrinsic Complexity and Dimension of Design Spaces"

License

Notifications You must be signed in to change notification settings

maskjp/design_embeddings_jmd_2016

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

22 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Design Manifolds Capture the Intrinsic Complexity and Dimension of Design Spaces

Experiment code associated with our JMD paper: "Design Manifolds Capture the Intrinsic Complexity and Dimension of Design Spaces"

Alt text

Edit experiment configurations in config.ini

To perform the embedding and synthesize new shapes:

python training.py

To synthesize new shapes using trained models:

python synthesis.py

The settings of the kernel PCA and autoencoders are in the configuration files:

./hp-opt/hp_<example name>_<noise scale>.ini

We use pySMAC for hyperparameter optimization of kernel PCA and autoencoders.

The code is licensed under the MIT license. Feel free to use all or portions for your research or related projects so long as you provide the following citation information:

Chen W, Fuge M, Chazan J. Design Manifolds Capture the Intrinsic Complexity and Dimension of Design Spaces. ASME. J. Mech. Des. 2017;139(5):051102-051102-10. doi:10.1115/1.4036134.

@article{chen2017design,
  title={Design Manifolds Capture the Intrinsic Complexity and Dimension of Design Spaces},
  author={Chen, Wei and Fuge, Mark and Chazan, Jonah},
  journal={Journal of Mechanical Design},
  volume={139},
  number={5},
  pages={051102-051102-10},
  year={2017},
  publisher={American Society of Mechanical Engineers}
}

About

Experiment code associated with our JMD paper: "Design Manifolds Capture the Intrinsic Complexity and Dimension of Design Spaces"

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 99.9%
  • Shell 0.1%