Skip to content

markobonna/meetthemusic

Repository files navigation

Meet the Music

This project was built for the 2023 Flow Hackathon with a special Thank You to the teams at Next.js, Flow Blockchain, Dapper Wallet, Niftory, and Riffusion.

Tech Stack

Quick Start

Create .env file

cd to the root of the project

Create .env file

 touch .env

Generate a Unique NEXTAUTH_SECRET

 openssl rand -base64 32

Add your variables to the .env file

From Niftory: https://docs.niftory.com/
From Dapper Wallet: https://docs.meetdapper.com/developing-for-the-platform
NEXT_PUBLIC_API_KEY="insert_your_api_key_here"
NEXT_PUBLIC_CLIENT_ID="insert_your_client_id_here"
CLIENT_SECRET="insert_your_super_secret_client_secret_that_is_unique_to_your_app_DO_NOT_SHARE_OR_COMMIT"
NIFTORY_AUTH_ISSUER="https://auth.staging.niftory.com"
NEXT_PUBLIC_API_PATH="https://graphql.api.staging.niftory.com"
NEXTAUTH_URL="http://localhost:insert_your_port"
NEXTAUTH_SECRET="insert_your_secret_here"
NEXT_PUBLIC_FLOW_ACCESS_API="https://access-testnet.onflow.org"
NEXT_PUBLIC_WALLET_API="https://staging.accounts.meetdapper.com"
NEXT_PUBLIC_FLOW_SCAN_URL="https://testnet.flowscan.org"
NEXT_PUBLIC_NFT_ADDRESS="0x631e88ae7f1d7c20"
NEXT_PUBLIC_NIFTORY_ADDRESS="0x04f74f0252479aed"
NEXT_PUBLIC_REGISTRY_ADDRESS="0x6085ae87e78e1433"
NEXT_PUBLIC_MERCHANT_ACCOUNT_ADDRESS="insert_your_dapper_organization_address_here"
NEXT_PUBLIC_ENV="development"
NEXT_PUBLIC_VERCEL_URL="insert.your.public.application.url"
FLASK_URL="http://127.0.0.1:3013/run_inference" (only use if you are runing AI server locally)

Install Dependencies

yarn install

Start the development server

yarn dev

AI Cloud Server

Follow instructions in my Google Colab page here: Meet the Music

Deploy your model to Hugging Face with Gradio. View my deployment here: https://huggingface.co/spaces/goudastudios/text-to-music

Go to settings, then under "space hardware" select "T4 medium" or above to run the model. Switch back to the free CPU basic space hardware when not demoing your model to save on costs. The T4 model costs about $1 an hour to run.

Note this model will not run if you have it on the Free plan. Please reach out to me on twitter at MarkObonna and I will switch my model from free to T4 plan so you can use the demo.

AI Local Server

Use this if your computer has enough GPU to run Stable Diffusion locally.

Install python virtual environment

conda create --name riffusion python=3.9
conda activate riffusion

Install python dependencies

python -m pip install -r requirements.txt

Install ffmpeg

brew install ffmpeg

Test your CUDA-Torch availability

import torch
torch.cuda.is_available()

If using MPS on a mac wilapple silicon chips, test MPS availability

import torch
torch.backends.mps.is_available()

Run the model server

python -m riffusion.server --host 127.0.0.1 --port 3013

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published