Skip to content

Development of spherical harmonic beamforming using Python and Eigenmike recordings

Notifications You must be signed in to change notification settings

marc1701/area-beamforming

Repository files navigation

AREA-Beamforming

by Marc C. Green

A clustering approach to sound source tracking in Ambisonic audio. This modules contains code for:

  • Spherical harmonic eamforming using Plane Wave Decomposition and Cross-pattern coherence beams.
  • Rotation of non axis-symmetric spherical functions using Wigner-D matrices.
  • Fibonacci, regular and geodesic spherical sampling schemes.
  • Clustering (DBSCAN) and regression (SVR) for estimating coherent sound sources from power maps.
  • find_sources wrapper function for automating estimation of source trajectories from an Ambisonic audio file.
  • Functions to plot outputs.
  • Implementations of Frame Recall and DOA Error performance metrics from DCASE 2019.

Requirements

Usage

find_sources(input, *args, **kwargs)

input should be a path to an Ambisonic audio file.

*kwargs passed to sph_peaks_t:

  • max_n_peaks=20 - the maximum number of peaks that will be saved per frame.
  • audio_length_seconds=None - optional variable replacing output frame numbers with time in seconds.

*args passed to obj_trajectories:

  • eps=0.1 - DBSCAN Eps parameter.
  • min_samples=10 - DBSCAN MinPts parameter.
  • relative_peak_threshold=0.5 - dipy rel_pk parameter.
  • min_separation_angle=5 - dipy min_sep parameter.

About

Development of spherical harmonic beamforming using Python and Eigenmike recordings

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages