Skip to content

map9959/SymbolicLib

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

51 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

SymbolicLib

teaser

This repository contains an implementation of algorithms presented in

Sparsity-Specific Code Optimization using Expression Trees
Philipp Herholz, Xuan Tang, Teseo Schneider, Shoaib Kamil, Daniele Panozzo, Olga Sorkine-Hornung
In ACM Transactions on Graphics (2022)
PDF, Project page

Compiling

Compiling from scratch requires CMake and a recent version of XCode on Mac and Visual Studio 2019 on Windows.

On MacOS, compiling should be as simple as

git clone https://github.com/PhHerholz/SymbolicLib
cd SymbolicLib && mkdir build && cd build
cmake .. 
make -j4

The Symbolic type

A symbolic expression is represented by instances of the class Sym::Symbolic. We start by creating two variables. Variables have two parameters, a variable id and a variable group.

Symbolic a(0, 0);
Symbolic b(1, 0);

Symbolic instances can be combined using mathematical operations.

Symbolic c = a + b * sqrt(a * b);

Evaluating the requires concrete values for a and b. The second argument to evaluate defines these values for variable group 0.

cout << evaluate(c, vector<double>{1., 2.}) << endl; // 3.82843

The expression can be differentiated with respect to a set of variables.

auto dc = differentiate(c, vector<Symbolic>{a, b});
   
cout << evaluate(dc[0], vector<double>{1., 2.}) << endl; // 2.41421
cout << evaluate(dc[1], vector<double>{1., 2.}) << endl; // 2.12132

Basic library usage

The library can be used to generate optimized code evaluating a sparse expression. First we load a regular sparse matrix.

 Eigen::SparseMatrix<double> A;
 Eigen::loadMarket(A, "../../data/sphere.mtx");

The function makeSymbolic builds a copy of the sparse matrix A and replaces each value with a variable of group 0.

Eigen::SparseMatrix<Symbolic> AS = makeSymbolic(A, 0);

The symbolic matrix BS stores symbolic expressions for each entry.

Eigen::SparseMatrix<Symbolic> BS = AS.transpose() * AS + AS;

We want to compile a program that evaluates the expression. Compute unit defines such a program; the first parameter requests a vectorized program using 256 AVX2 registers holding 4 doubles. NumThreads(8) defines a parallelized implementation using 8 threads. The next two parameters define the input variables of the program AS and the expression to be evaluated BS.

ComputeUnit<double> unit(Device(VecWidth(4), NumThreads(8)), AS, BS);

Compile, link and execute the program using the numeric values contained in A.

unit.compile().execute(A);

Retrieve the result and compare to a reference solution.

Eigen::SparseMatrix<double> B = A.transpose() * A + A;
Eigen::SparseMatrix<double> B2 = B;

unit.getResults(B2);

cout << "difference: " << (B - B2).norm() << endl;

Generating a program for AMD HIP devices just requires setting the UseHIP device parameter.

ComputeUnit<double> unitHIP(Device(UseHIP(), ThreadsPerBlock(128)), AS, BS);
unitHIP.compile().execute(A).getResults(B2);

Cuda devices can be used in the same way.

ComputeUnit<double> unitCuda(Device(UseCuda(), ThreadsPerBlock(128)), AS, BS);
unitCuda.compile().execute(A).getResults(B2);

The full example can be found here.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • C++ 83.5%
  • CMake 16.5%