Skip to content

C++ code for "GMS: Grid-based Motion Statistics for Fast, Ultra-robust Feature Correspondence"

License

Notifications You must be signed in to change notification settings

manojs8473/GMS-Feature-Matcher

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

72 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

GMS: Grid-based Motion Statistics for Fast, Ultra-robust Feature Correspondence

alt tag

Publication:

JiaWang Bian, Wen-Yan Lin, Yasuyuki Matsushita, Sai-Kit Yeung, Tan Dat Nguyen, Ming-Ming Cheng

GMS: Grid-based Motion Statistics for Fast, Ultra-robust Feature Correspondence IEEE CVPR, 2017

[Project Page] [pdf] [Bib] [Code] [Youtube]

Usage

Requirement:

1.OpenCV 3.0 or later (for IO and ORB features, necessary)

2.cudafeatures2d module(for gpu nearest neighbor, optional)

C++ Example:

Image pair demo in demo.cpp.

Matlab Example

You should compile the code with opencv library firstly(see the 'Compile.m').

Tune Parameters:

In demo.cpp
	1.#define USE_GPU" will need gpu cudafeatures2d module for nearest neighbor match, 
		using cpu match by commenting it.

In gms_matcher.h
			
	2.	#define THRESH_FACTOR 6			// factor for calculating threshold
			The higher, the less matches, vice verse
			
	3. 	int GetInlierMask(vector<bool> &vbInliers, bool WithScale = false, bool WithRotation = false)
			You can open multi-scale and rotation if your image pair contains that. 

If you like this work, please cite our paper

@inproceedings{bian2017gms,
  title={GMS: Grid-based Motion Statistics for Fast, Ultra-robust Feature Correspondence},
  author={JiaWang Bian and Wen-Yan Lin and Yasuyuki Matsushita and Sai-Kit Yeung and Tan Dat Nguyen and Ming-Ming Cheng},
  booktitle={IEEE Conference on Computer Vision and Pattern Recognition},
  year={2017}
}

About

C++ code for "GMS: Grid-based Motion Statistics for Fast, Ultra-robust Feature Correspondence"

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • C++ 89.9%
  • MATLAB 8.4%
  • CMake 1.7%