-
Notifications
You must be signed in to change notification settings - Fork 338
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Open source URMP dataset pipeline #458
Open
copybara-service
wants to merge
1
commit into
main
Choose a base branch
from
test_460754854
base: main
Could not load branches
Branch not found: {{ refName }}
Loading
Could not load tags
Nothing to show
Loading
Are you sure you want to change the base?
Some commits from the old base branch may be removed from the timeline,
and old review comments may become outdated.
Open
Changes from all commits
Commits
File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,81 @@ | ||
# Copyright 2022 The DDSP Authors. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
r"""Prepare URMP dataset DDSP and NoteSequence features. | ||
|
||
Usage: | ||
==================== | ||
ddsp_prepare_urmp_dataset \ | ||
--input_filepath='/path/to/input.tfrecord-*' \ | ||
--output_filepath='/path/to/output.tfrecord' \ | ||
--instrument_key=vn \ | ||
--num_shards=10 \ | ||
--alsologtostderr | ||
|
||
""" | ||
|
||
from absl import app | ||
from absl import flags | ||
|
||
from ddsp.training.data_preparation.prepare_urmp_dataset_lib import prepare_urmp | ||
import tensorflow.compat.v2 as tf | ||
|
||
FLAGS = flags.FLAGS | ||
|
||
flags.DEFINE_string('input_filepath', '', 'Input filepath for dataset.') | ||
flags.DEFINE_string('output_filepath', '', 'Output filepath for dataset.') | ||
flags.DEFINE_multi_string( | ||
'instrument_key', [], 'Instrument keys to extract. ' | ||
'If not set, extract all instruments. Possible keys ' | ||
'are vn, va, vc, db, fl, ob, cl, sax, bn, tpt, hn, ' | ||
'tbn, tba.') | ||
flags.DEFINE_integer( | ||
'num_shards', None, 'Num shards for output dataset. If ' | ||
'None, this number will be determined automatically.') | ||
flags.DEFINE_bool('batch', True, 'Whether or not to batch the dataset.') | ||
flags.DEFINE_bool('force_monophonic', True, 'Fix URMP note labels such that ' | ||
'note onsets and offsets do not overlap.') | ||
flags.DEFINE_list( | ||
'pipeline_options', '--runner=DirectRunner', | ||
'A comma-separated list of command line arguments to be used as options ' | ||
'for the Beam Pipeline.') | ||
flags.DEFINE_integer('ddsp_sample_rate', 250, 'Sample rate for dataset output.') | ||
flags.DEFINE_integer('audio_sample_rate', 16000, 'Sample rate for URMP audio.') | ||
|
||
|
||
def run(): | ||
prepare_urmp( | ||
input_filepath=FLAGS.input_filepath, | ||
output_filepath=FLAGS.output_filepath, | ||
instrument_keys=FLAGS.instrument_key, | ||
num_shards=FLAGS.num_shards, | ||
batch=FLAGS.batch, | ||
force_monophonic=FLAGS.force_monophonic, | ||
pipeline_options=FLAGS.pipeline_options, | ||
ddsp_sample_rate=FLAGS.ddsp_sample_rate, | ||
audio_sample_rate=FLAGS.audio_sample_rate) | ||
|
||
|
||
def main(unused_argv): | ||
"""From command line.""" | ||
run() | ||
|
||
|
||
def console_entry_point(): | ||
"""From pip installed script.""" | ||
app.run(main) | ||
|
||
|
||
if __name__ == '__main__': | ||
console_entry_point() |
265 changes: 265 additions & 0 deletions
265
ddsp/training/data_preparation/prepare_urmp_dataset_lib.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,265 @@ | ||
# Copyright 2022 The DDSP Authors. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
"""URMP data import pipeline.""" | ||
import apache_beam as beam | ||
import ddsp | ||
from ddsp.training import heuristics | ||
from mir_eval import melody | ||
from note_seq import audio_io | ||
from note_seq import constants | ||
from note_seq import sequences_lib | ||
from note_seq.protobuf import music_pb2 | ||
import numpy as np | ||
import tensorflow as tf | ||
|
||
|
||
DDSP_SAMPLE_RATE = 250 | ||
AUDIO_SAMPLE_RATE = 16000 | ||
|
||
|
||
def parse_example(tfexample): | ||
"""Parse tf.Example protos to dict of numpy arrays.""" | ||
features = { | ||
'id': | ||
tf.io.FixedLenFeature([], dtype=tf.string), | ||
'audio': | ||
tf.io.FixedLenFeature([], dtype=tf.string), | ||
'f0_hz': | ||
tf.io.FixedLenSequenceFeature([], | ||
dtype=tf.float32, | ||
allow_missing=True), | ||
'f0_time': | ||
tf.io.FixedLenSequenceFeature([], | ||
dtype=tf.float32, | ||
allow_missing=True), | ||
'sequence': | ||
tf.io.FixedLenFeature([], dtype=tf.string) | ||
} | ||
ex = { | ||
key: val.numpy() | ||
for key, val in tf.io.parse_single_example(tfexample, features).items() | ||
} | ||
return ex | ||
|
||
|
||
def get_active_frame_indices(piano_roll): | ||
"""Create matrix of frame indices for active notes relative to onset.""" | ||
active_frame_indices = np.zeros_like(piano_roll.active_velocities) | ||
for frame_i in range(1, active_frame_indices.shape[0]): | ||
prev_indices = active_frame_indices[frame_i - 1, :] | ||
active_notes = piano_roll.active[frame_i, :] | ||
active_frame_indices[frame_i, :] = (prev_indices + 1) * active_notes | ||
return active_frame_indices | ||
|
||
|
||
def attach_metadata(ex, ddsp_sample_rate, audio_sample_rate, force_monophonic): | ||
"""Parse and attach metadata from the dataset.""" | ||
|
||
def extract_recording_id(id_string): | ||
id_string = id_string.split(b'/')[-1] | ||
id_string = id_string.split(b'.')[0] | ||
return id_string | ||
|
||
def extract_instrument_id(id_string): | ||
id_string = extract_recording_id(id_string).split(b'_') | ||
return id_string[2] | ||
|
||
def extract_notes(sequence_str, expected_seconds): | ||
ns = music_pb2.NoteSequence.FromString(sequence_str) | ||
# total time in dataset doesn't include silence at the end | ||
if force_monophonic: | ||
for i in range(1, len(ns.notes)): | ||
note = ns.notes[i] | ||
prev_note = ns.notes[i - 1] | ||
onset_frame = int(note.start_time * ddsp_sample_rate) | ||
prev_note_offset_frame = int(prev_note.end_time * ddsp_sample_rate) | ||
if prev_note_offset_frame >= onset_frame: | ||
frames_to_move = (prev_note_offset_frame - onset_frame) + 1 | ||
# move previous note's onset back by frames_to_move frames in seconds | ||
prev_note.end_time -= float(frames_to_move) / ddsp_sample_rate | ||
|
||
ns.total_time = expected_seconds | ||
piano_roll = sequences_lib.sequence_to_pianoroll( | ||
ns, | ||
frames_per_second=ddsp_sample_rate, | ||
min_pitch=constants.MIN_MIDI_PITCH, | ||
max_pitch=constants.MAX_MIDI_PITCH, | ||
onset_mode='length_ms') | ||
|
||
note_dict = { | ||
'note_active_velocities': piano_roll.active_velocities, | ||
'note_active_frame_indices': get_active_frame_indices(piano_roll), | ||
'note_onsets': piano_roll.onsets, | ||
'note_offsets': piano_roll.offsets | ||
} | ||
|
||
return note_dict | ||
|
||
ex['recording_id'] = extract_recording_id(ex['id']) | ||
ex['instrument_id'] = extract_instrument_id(ex['id']) | ||
ex['audio'] = audio_io.wav_data_to_samples_librosa( | ||
ex['audio'], sample_rate=audio_sample_rate) | ||
expected_seconds = ex['audio'].shape[0] / audio_sample_rate | ||
ex.update(extract_notes(ex['sequence'], expected_seconds)) | ||
beam.metrics.Metrics.distribution('prepare-urmp', | ||
'orig-audio-len').update(len(ex['audio'])) | ||
return ex | ||
|
||
|
||
def normalize_audio(ex, max_audio): | ||
ex['audio'] /= max_audio | ||
return ex | ||
|
||
|
||
def resample(ex, ddsp_sample_rate, audio_sample_rate): | ||
"""Resample features to standard DDSP sample rate.""" | ||
f0_times = ex['f0_time'] | ||
f0_orig = ex['f0_hz'] | ||
max_time = np.max(f0_times) | ||
new_times = np.linspace(0, max_time, int(ddsp_sample_rate * max_time)) | ||
if f0_times[0] > 0: | ||
f0_orig = np.insert(f0_orig, 0, f0_orig[0]) | ||
f0_times = np.insert(f0_times, 0, 0) | ||
f0_interpolated, _ = melody.resample_melody_series( | ||
f0_times, f0_orig, | ||
melody.freq_to_voicing(f0_orig)[1], new_times) | ||
ex['f0_hz'] = f0_interpolated | ||
ex['f0_time'] = new_times | ||
ex['orig_f0_hz'] = f0_orig | ||
ex['orig_f0_time'] = f0_times | ||
|
||
# Truncate audio to an integer multiple of f0_hz vector. | ||
num_audio_samples = round( | ||
len(ex['f0_hz']) * (audio_sample_rate / ddsp_sample_rate)) | ||
beam.metrics.Metrics.distribution( | ||
'prepare-urmp', | ||
'resampled-audio-diff').update(num_audio_samples - len(ex['audio'])) | ||
|
||
ex['audio'] = ex['audio'][:num_audio_samples] | ||
|
||
# Truncate pianoroll features to length of f0_hz vector. | ||
for key in [ | ||
'note_active_frame_indices', 'note_active_velocities', 'note_onsets', | ||
'note_offsets' | ||
]: | ||
ex[key] = ex[key][:len(ex['f0_hz']), :] | ||
|
||
return ex | ||
|
||
|
||
def batch_dataset(ex, audio_sample_rate, ddsp_sample_rate): | ||
"""Split features and audio into 4 second sliding windows.""" | ||
batched = [] | ||
for key, vec in ex.items(): | ||
if isinstance(vec, np.ndarray): | ||
if key == 'audio': | ||
sampling_rate = audio_sample_rate | ||
else: | ||
sampling_rate = ddsp_sample_rate | ||
|
||
frames = heuristics.window_array(vec, sampling_rate, 4.0, 0.25) | ||
if not batched: | ||
batched = [{} for _ in range(len(frames))] | ||
for i, frame in enumerate(frames): | ||
batched[i][key] = frame | ||
|
||
# once batches are created, replicate ids and metadata over all elements. | ||
for key, val in ex.items(): | ||
if not isinstance(val, np.ndarray): | ||
for batch in batched: | ||
batch[key] = val | ||
|
||
beam.metrics.Metrics.counter('prepare-urmp', | ||
'batches-created').inc(len(batched)) | ||
return batched | ||
|
||
|
||
def attach_ddsp_features(ex): | ||
ex['loudness_db'] = ddsp.spectral_ops.compute_loudness(ex['audio']) | ||
ex['power_db'] = ddsp.spectral_ops.compute_power(ex['audio'], frame_size=256) | ||
# ground truth annotations are set with confidence 1.0 | ||
ex['f0_confidence'] = np.ones_like(ex['f0_hz']) | ||
beam.metrics.Metrics.counter('prepare-urmp', 'ddsp-features-attached').inc() | ||
return ex | ||
|
||
|
||
def serialize_tfexample(ex): | ||
"""Creates a tf.Example message ready to be written to a file.""" | ||
|
||
def _feature(arr): | ||
"""Returns a feature from a numpy array or string.""" | ||
if isinstance(arr, (bytes, str)): | ||
return tf.train.Feature(bytes_list=tf.train.BytesList(value=[arr])) | ||
else: | ||
arr = np.asarray(arr).reshape(-1) | ||
return tf.train.Feature(float_list=tf.train.FloatList(value=arr)) | ||
|
||
# Create a dictionary mapping the feature name to the tf.Example-compatible | ||
# data type. | ||
feature = {k: _feature(v) for k, v in ex.items()} | ||
|
||
# Create a Features message using tf.train.Example. | ||
example_proto = tf.train.Example(features=tf.train.Features(feature=feature)) | ||
return example_proto | ||
|
||
|
||
def prepare_urmp(input_filepath, | ||
output_filepath, | ||
instrument_keys, | ||
num_shards, | ||
batch, | ||
force_monophonic, | ||
pipeline_options, | ||
ddsp_sample_rate=DDSP_SAMPLE_RATE, | ||
audio_sample_rate=AUDIO_SAMPLE_RATE): | ||
"""Pipeline for parsing URMP dataset to a usable format for DDSP.""" | ||
pipeline_options = beam.options.pipeline_options.PipelineOptions( | ||
pipeline_options) | ||
with beam.Pipeline(options=pipeline_options) as pipeline: | ||
examples = ( | ||
pipeline | ||
| | ||
'read_tfrecords' >> beam.io.tfrecordio.ReadFromTFRecord(input_filepath) | ||
| 'parse_example' >> beam.Map(parse_example) | ||
| 'attach_metadata' >> beam.Map( | ||
attach_metadata, | ||
ddsp_sample_rate=ddsp_sample_rate, | ||
audio_sample_rate=audio_sample_rate, | ||
force_monophonic=force_monophonic)) | ||
|
||
if instrument_keys: | ||
examples |= 'filter_instruments' >> beam.Filter( | ||
lambda ex: ex['instrument_id'].decode() in instrument_keys) | ||
|
||
examples |= 'resample' >> beam.Map( | ||
resample, | ||
ddsp_sample_rate=ddsp_sample_rate, | ||
audio_sample_rate=audio_sample_rate) | ||
if batch: | ||
examples |= 'batch' >> beam.FlatMap( | ||
batch_dataset, | ||
audio_sample_rate=audio_sample_rate, | ||
ddsp_sample_rate=ddsp_sample_rate) | ||
_ = ( | ||
examples | ||
| 'attach_ddsp_features' >> beam.Map(attach_ddsp_features) | ||
| 'filter_silence' >> | ||
beam.Filter(lambda ex: np.any(ex['loudness_db'] > -70)) | ||
| 'serialize_tfexamples' >> beam.Map(serialize_tfexample) | ||
| 'shuffle' >> beam.Reshuffle() | ||
| beam.io.tfrecordio.WriteToTFRecord( | ||
output_filepath, | ||
num_shards=num_shards, | ||
coder=beam.coders.ProtoCoder(tf.train.Example))) |
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
how is
sequence
extracted from the source URMP dataset? what is it?There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
I figured you can just create a
NoteSequence
using URMP's notes files