-
Notifications
You must be signed in to change notification settings - Fork 339
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Showing
5 changed files
with
408 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,81 @@ | ||
# Copyright 2022 The DDSP Authors. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
r"""Prepare URMP dataset DDSP and NoteSequence features. | ||
Usage: | ||
==================== | ||
ddsp_prepare_urmp_dataset \ | ||
--input_filepath='/path/to/input.tfrecord-*' \ | ||
--output_filepath='/path/to/output.tfrecord' \ | ||
--instrument_key=vn \ | ||
--num_shards=10 \ | ||
--alsologtostderr | ||
""" | ||
|
||
from absl import app | ||
from absl import flags | ||
|
||
from ddsp.training.data_preparation.prepare_urmp_dataset_lib import prepare_urmp | ||
import tensorflow.compat.v2 as tf | ||
|
||
FLAGS = flags.FLAGS | ||
|
||
flags.DEFINE_string('input_filepath', '', 'Input filepath for dataset.') | ||
flags.DEFINE_string('output_filepath', '', 'Output filepath for dataset.') | ||
flags.DEFINE_multi_string( | ||
'instrument_key', [], 'Instrument keys to extract. ' | ||
'If not set, extract all instruments. Possible keys ' | ||
'are vn, va, vc, db, fl, ob, cl, sax, bn, tpt, hn, ' | ||
'tbn, tba.') | ||
flags.DEFINE_integer( | ||
'num_shards', None, 'Num shards for output dataset. If ' | ||
'None, this number will be determined automatically.') | ||
flags.DEFINE_bool('batch', True, 'Whether or not to batch the dataset.') | ||
flags.DEFINE_bool('force_monophonic', True, 'Fix URMP note labels such that ' | ||
'note onsets and offsets do not overlap.') | ||
flags.DEFINE_list( | ||
'pipeline_options', '--runner=DirectRunner', | ||
'A comma-separated list of command line arguments to be used as options ' | ||
'for the Beam Pipeline.') | ||
flags.DEFINE_integer('ddsp_sample_rate', 250, 'Sample rate for dataset output.') | ||
flags.DEFINE_integer('audio_sample_rate', 16000, 'Sample rate for URMP audio.') | ||
|
||
|
||
def run(): | ||
prepare_urmp( | ||
input_filepath=FLAGS.input_filepath, | ||
output_filepath=FLAGS.output_filepath, | ||
instrument_keys=FLAGS.instrument_key, | ||
num_shards=FLAGS.num_shards, | ||
batch=FLAGS.batch, | ||
force_monophonic=FLAGS.force_monophonic, | ||
pipeline_options=FLAGS.pipeline_options, | ||
ddsp_sample_rate=FLAGS.ddsp_sample_rate, | ||
audio_sample_rate=FLAGS.audio_sample_rate) | ||
|
||
|
||
def main(unused_argv): | ||
"""From command line.""" | ||
run() | ||
|
||
|
||
def console_entry_point(): | ||
"""From pip installed script.""" | ||
app.run(main) | ||
|
||
|
||
if __name__ == '__main__': | ||
console_entry_point() |
265 changes: 265 additions & 0 deletions
265
ddsp/training/data_preparation/prepare_urmp_dataset_lib.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,265 @@ | ||
# Copyright 2022 The DDSP Authors. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
"""URMP data import pipeline.""" | ||
import apache_beam as beam | ||
import ddsp | ||
from ddsp.training import heuristics | ||
from mir_eval import melody | ||
from note_seq import audio_io | ||
from note_seq import constants | ||
from note_seq import sequences_lib | ||
from note_seq.protobuf import music_pb2 | ||
import numpy as np | ||
import tensorflow as tf | ||
|
||
|
||
DDSP_SAMPLE_RATE = 250 | ||
AUDIO_SAMPLE_RATE = 16000 | ||
|
||
|
||
def parse_example(tfexample): | ||
"""Parse tf.Example protos to dict of numpy arrays.""" | ||
features = { | ||
'id': | ||
tf.io.FixedLenFeature([], dtype=tf.string), | ||
'audio': | ||
tf.io.FixedLenFeature([], dtype=tf.string), | ||
'f0_hz': | ||
tf.io.FixedLenSequenceFeature([], | ||
dtype=tf.float32, | ||
allow_missing=True), | ||
'f0_time': | ||
tf.io.FixedLenSequenceFeature([], | ||
dtype=tf.float32, | ||
allow_missing=True), | ||
'sequence': | ||
tf.io.FixedLenFeature([], dtype=tf.string) | ||
} | ||
ex = { | ||
key: val.numpy() | ||
for key, val in tf.io.parse_single_example(tfexample, features).items() | ||
} | ||
return ex | ||
|
||
|
||
def get_active_frame_indices(piano_roll): | ||
"""Create matrix of frame indices for active notes relative to onset.""" | ||
active_frame_indices = np.zeros_like(piano_roll.active_velocities) | ||
for frame_i in range(1, active_frame_indices.shape[0]): | ||
prev_indices = active_frame_indices[frame_i - 1, :] | ||
active_notes = piano_roll.active[frame_i, :] | ||
active_frame_indices[frame_i, :] = (prev_indices + 1) * active_notes | ||
return active_frame_indices | ||
|
||
|
||
def attach_metadata(ex, ddsp_sample_rate, audio_sample_rate, force_monophonic): | ||
"""Parse and attach metadata from the dataset.""" | ||
|
||
def extract_recording_id(id_string): | ||
id_string = id_string.split(b'/')[-1] | ||
id_string = id_string.split(b'.')[0] | ||
return id_string | ||
|
||
def extract_instrument_id(id_string): | ||
id_string = extract_recording_id(id_string).split(b'_') | ||
return id_string[2] | ||
|
||
def extract_notes(sequence_str, expected_seconds): | ||
ns = music_pb2.NoteSequence.FromString(sequence_str) | ||
# total time in dataset doesn't include silence at the end | ||
if force_monophonic: | ||
for i in range(1, len(ns.notes)): | ||
note = ns.notes[i] | ||
prev_note = ns.notes[i - 1] | ||
onset_frame = int(note.start_time * ddsp_sample_rate) | ||
prev_note_offset_frame = int(prev_note.end_time * ddsp_sample_rate) | ||
if prev_note_offset_frame >= onset_frame: | ||
frames_to_move = (prev_note_offset_frame - onset_frame) + 1 | ||
# move previous note's onset back by frames_to_move frames in seconds | ||
prev_note.end_time -= float(frames_to_move) / ddsp_sample_rate | ||
|
||
ns.total_time = expected_seconds | ||
piano_roll = sequences_lib.sequence_to_pianoroll( | ||
ns, | ||
frames_per_second=ddsp_sample_rate, | ||
min_pitch=constants.MIN_MIDI_PITCH, | ||
max_pitch=constants.MAX_MIDI_PITCH, | ||
onset_mode='length_ms') | ||
|
||
note_dict = { | ||
'note_active_velocities': piano_roll.active_velocities, | ||
'note_active_frame_indices': get_active_frame_indices(piano_roll), | ||
'note_onsets': piano_roll.onsets, | ||
'note_offsets': piano_roll.offsets | ||
} | ||
|
||
return note_dict | ||
|
||
ex['recording_id'] = extract_recording_id(ex['id']) | ||
ex['instrument_id'] = extract_instrument_id(ex['id']) | ||
ex['audio'] = audio_io.wav_data_to_samples_librosa( | ||
ex['audio'], sample_rate=audio_sample_rate) | ||
expected_seconds = ex['audio'].shape[0] / audio_sample_rate | ||
ex.update(extract_notes(ex['sequence'], expected_seconds)) | ||
beam.metrics.Metrics.distribution('prepare-urmp', | ||
'orig-audio-len').update(len(ex['audio'])) | ||
return ex | ||
|
||
|
||
def normalize_audio(ex, max_audio): | ||
ex['audio'] /= max_audio | ||
return ex | ||
|
||
|
||
def resample(ex, ddsp_sample_rate, audio_sample_rate): | ||
"""Resample features to standard DDSP sample rate.""" | ||
f0_times = ex['f0_time'] | ||
f0_orig = ex['f0_hz'] | ||
max_time = np.max(f0_times) | ||
new_times = np.linspace(0, max_time, int(ddsp_sample_rate * max_time)) | ||
if f0_times[0] > 0: | ||
f0_orig = np.insert(f0_orig, 0, f0_orig[0]) | ||
f0_times = np.insert(f0_times, 0, 0) | ||
f0_interpolated, _ = melody.resample_melody_series( | ||
f0_times, f0_orig, | ||
melody.freq_to_voicing(f0_orig)[1], new_times) | ||
ex['f0_hz'] = f0_interpolated | ||
ex['f0_time'] = new_times | ||
ex['orig_f0_hz'] = f0_orig | ||
ex['orig_f0_time'] = f0_times | ||
|
||
# Truncate audio to an integer multiple of f0_hz vector. | ||
num_audio_samples = round( | ||
len(ex['f0_hz']) * (audio_sample_rate / ddsp_sample_rate)) | ||
beam.metrics.Metrics.distribution( | ||
'prepare-urmp', | ||
'resampled-audio-diff').update(num_audio_samples - len(ex['audio'])) | ||
|
||
ex['audio'] = ex['audio'][:num_audio_samples] | ||
|
||
# Truncate pianoroll features to length of f0_hz vector. | ||
for key in [ | ||
'note_active_frame_indices', 'note_active_velocities', 'note_onsets', | ||
'note_offsets' | ||
]: | ||
ex[key] = ex[key][:len(ex['f0_hz']), :] | ||
|
||
return ex | ||
|
||
|
||
def batch_dataset(ex, audio_sample_rate, ddsp_sample_rate): | ||
"""Split features and audio into 4 second sliding windows.""" | ||
batched = [] | ||
for key, vec in ex.items(): | ||
if isinstance(vec, np.ndarray): | ||
if key == 'audio': | ||
sampling_rate = audio_sample_rate | ||
else: | ||
sampling_rate = ddsp_sample_rate | ||
|
||
frames = heuristics.window_array(vec, sampling_rate, 4.0, 0.25) | ||
if not batched: | ||
batched = [{} for _ in range(len(frames))] | ||
for i, frame in enumerate(frames): | ||
batched[i][key] = frame | ||
|
||
# once batches are created, replicate ids and metadata over all elements. | ||
for key, val in ex.items(): | ||
if not isinstance(val, np.ndarray): | ||
for batch in batched: | ||
batch[key] = val | ||
|
||
beam.metrics.Metrics.counter('prepare-urmp', | ||
'batches-created').inc(len(batched)) | ||
return batched | ||
|
||
|
||
def attach_ddsp_features(ex): | ||
ex['loudness_db'] = ddsp.spectral_ops.compute_loudness(ex['audio']) | ||
ex['power_db'] = ddsp.spectral_ops.compute_power(ex['audio'], frame_size=256) | ||
# ground truth annotations are set with confidence 1.0 | ||
ex['f0_confidence'] = np.ones_like(ex['f0_hz']) | ||
beam.metrics.Metrics.counter('prepare-urmp', 'ddsp-features-attached').inc() | ||
return ex | ||
|
||
|
||
def serialize_tfexample(ex): | ||
"""Creates a tf.Example message ready to be written to a file.""" | ||
|
||
def _feature(arr): | ||
"""Returns a feature from a numpy array or string.""" | ||
if isinstance(arr, (bytes, str)): | ||
return tf.train.Feature(bytes_list=tf.train.BytesList(value=[arr])) | ||
else: | ||
arr = np.asarray(arr).reshape(-1) | ||
return tf.train.Feature(float_list=tf.train.FloatList(value=arr)) | ||
|
||
# Create a dictionary mapping the feature name to the tf.Example-compatible | ||
# data type. | ||
feature = {k: _feature(v) for k, v in ex.items()} | ||
|
||
# Create a Features message using tf.train.Example. | ||
example_proto = tf.train.Example(features=tf.train.Features(feature=feature)) | ||
return example_proto | ||
|
||
|
||
def prepare_urmp(input_filepath, | ||
output_filepath, | ||
instrument_keys, | ||
num_shards, | ||
batch, | ||
force_monophonic, | ||
pipeline_options, | ||
ddsp_sample_rate=DDSP_SAMPLE_RATE, | ||
audio_sample_rate=AUDIO_SAMPLE_RATE): | ||
"""Pipeline for parsing URMP dataset to a usable format for DDSP.""" | ||
pipeline_options = beam.options.pipeline_options.PipelineOptions( | ||
pipeline_options) | ||
with beam.Pipeline(options=pipeline_options) as pipeline: | ||
examples = ( | ||
pipeline | ||
| | ||
'read_tfrecords' >> beam.io.tfrecordio.ReadFromTFRecord(input_filepath) | ||
| 'parse_example' >> beam.Map(parse_example) | ||
| 'attach_metadata' >> beam.Map( | ||
attach_metadata, | ||
ddsp_sample_rate=ddsp_sample_rate, | ||
audio_sample_rate=audio_sample_rate, | ||
force_monophonic=force_monophonic)) | ||
|
||
if instrument_keys: | ||
examples |= 'filter_instruments' >> beam.Filter( | ||
lambda ex: ex['instrument_id'].decode() in instrument_keys) | ||
|
||
examples |= 'resample' >> beam.Map( | ||
resample, | ||
ddsp_sample_rate=ddsp_sample_rate, | ||
audio_sample_rate=audio_sample_rate) | ||
if batch: | ||
examples |= 'batch' >> beam.FlatMap( | ||
batch_dataset, | ||
audio_sample_rate=audio_sample_rate, | ||
ddsp_sample_rate=ddsp_sample_rate) | ||
_ = ( | ||
examples | ||
| 'attach_ddsp_features' >> beam.Map(attach_ddsp_features) | ||
| 'filter_silence' >> | ||
beam.Filter(lambda ex: np.any(ex['loudness_db'] > -70)) | ||
| 'serialize_tfexamples' >> beam.Map(serialize_tfexample) | ||
| 'shuffle' >> beam.Reshuffle() | ||
| beam.io.tfrecordio.WriteToTFRecord( | ||
output_filepath, | ||
num_shards=num_shards, | ||
coder=beam.coders.ProtoCoder(tf.train.Example))) |
Oops, something went wrong.