-
Notifications
You must be signed in to change notification settings - Fork 62
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge remote-tracking branch 'origin/master'
- Loading branch information
Showing
2 changed files
with
151 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,150 @@ | ||
#include <fstream> | ||
#include <iostream> | ||
#include <madness/mra/mra.h> | ||
#include <madness/mra/operator.h> | ||
|
||
using namespace madness; | ||
|
||
static const double L = 32.0; // box size | ||
static const long k = 8; // wavelet order | ||
static const double thresh = 1e-7; // precision | ||
static const double F=0.0; // electric field | ||
|
||
static double guess(const coord_3d& r) { | ||
const double x=r[0], y=r[1], z=r[2]; | ||
// this is the exact solution | ||
//return exp(-sqrt(x*x+y*y+z*z))/sqrt(constants::pi); | ||
// | ||
// this is too diffuse | ||
return exp(-sqrt(x*x+y*y+z*z)/2.0)/sqrt(8.0*constants::pi); | ||
} | ||
|
||
static double V(const coord_3d& r) { | ||
const double x=r[0], y=r[1], z=r[2]; | ||
return -1.0/(sqrt(x*x+y*y+z*z)) + F*z; | ||
} | ||
|
||
inline double mask1(double x) { | ||
/* Iterated first beta function to switch smoothly | ||
from 0->1 in [0,1]. n iterations produce 2*n-1 | ||
zero derivatives at the end points. Order of polyn | ||
is 3^n. | ||
Currently use one iteration so that first deriv. | ||
is zero at interior boundary and is exactly representable | ||
by low order multiwavelet without refinement */ | ||
|
||
x = (x * x * (3. - 2. * x)); | ||
return x; | ||
} | ||
|
||
static double mask3(const coord_3d& ruser) { | ||
coord_3d rsim; | ||
user_to_sim(ruser, rsim); | ||
double x = rsim[0], y = rsim[1], z = rsim[2]; | ||
double lo = 0.0625, hi = 1.0 - lo, result = 1.0; | ||
double rlo = 1.0 / lo; | ||
|
||
if (x < lo) | ||
result *= mask1(x * rlo); | ||
else if (x > hi) | ||
result *= mask1((1.0 - x) * rlo); | ||
if (y < lo) | ||
result *= mask1(y * rlo); | ||
else if (y > hi) | ||
result *= mask1((1.0 - y) * rlo); | ||
if (z < lo) | ||
result *= mask1(z * rlo); | ||
else if (z > hi) | ||
result *= mask1((1.0 - z) * rlo); | ||
|
||
return result; | ||
} | ||
|
||
void iterate(World& world, real_function_3d& V, real_function_3d& mask, real_function_3d& psi, double& eps) { | ||
real_function_3d Vpsi = (V*psi); | ||
Vpsi.scale(-2.0).truncate(); | ||
real_convolution_3d op = BSHOperator3D(world, sqrt(-2*eps), 0.001, 1e-6); | ||
real_function_3d tmp = apply(op,Vpsi).truncate(); | ||
tmp = tmp*mask; | ||
double norm = tmp.norm2(); | ||
real_function_3d r = tmp-psi; | ||
double rnorm = r.norm2(); | ||
double eps_new; | ||
if (rnorm > 0.2) { | ||
r *= 0.2/rnorm; | ||
print("step restriction"); | ||
eps_new = eps; | ||
} | ||
else { | ||
// Only update energy once step restriction is lifted since this is only locally convergent | ||
eps_new = eps - 0.5*inner(Vpsi,r)/(norm*norm); | ||
} | ||
if (world.rank() == 0) { | ||
print("norm=",norm," eps=",eps," err(psi)=",rnorm," err(eps)=",eps_new-eps); | ||
} | ||
psi += r; | ||
psi.scale(1.0/psi.norm2()); | ||
eps = eps_new; | ||
} | ||
|
||
std::tuple<double,double,double> compute_energy(World& world, real_function_3d& Vnuc, real_function_3d& psi) { | ||
double kinetic_energy = 0.0; | ||
for (int axis=0; axis<3; axis++) { | ||
real_derivative_3d D = free_space_derivative<double,3>(world, axis); | ||
real_function_3d dpsi = D(psi); | ||
kinetic_energy += 0.5*inner(dpsi,dpsi); | ||
} | ||
real_function_3d rho = square(psi).truncate(); | ||
double nuclear_attraction_energy = inner(Vnuc*psi,psi); | ||
double total_energy = kinetic_energy + nuclear_attraction_energy; | ||
return {kinetic_energy, nuclear_attraction_energy, total_energy}; | ||
} | ||
|
||
void run(World& world) { | ||
FunctionDefaults<3>::set_k(k); | ||
FunctionDefaults<3>::set_thresh(thresh); | ||
FunctionDefaults<3>::set_truncate_mode(1); | ||
FunctionDefaults<3>::set_cubic_cell(-L/2,L/2); | ||
|
||
real_function_3d Vnuc = real_factory_3d(world).f(V).truncate_mode(1); | ||
real_function_3d psi = real_factory_3d(world).f(guess); | ||
real_function_3d mask = real_factory_3d(world).f(mask3); | ||
psi = psi*mask; | ||
print("initial", psi.norm2()); | ||
psi.scale(1.0/psi.norm2()); | ||
|
||
double eps = -0.5; | ||
for (int iter=0; iter<15; iter++) { | ||
real_function_3d rho = square(psi).truncate(); | ||
iterate(world, Vnuc, mask, psi, eps); | ||
} | ||
|
||
// Manually tabluate the orbital along a line along the z axis ... probably easier to use the lineplot routine | ||
coord_3d r(0.0); | ||
psi.reconstruct(); | ||
for (int i=0; i<201; i++) { | ||
r[2] = -L/2 + L*i/200.0; | ||
print(r[2], psi(r)); | ||
} | ||
|
||
auto [kinetic_energy, nuclear_attraction_energy, total_energy] = compute_energy(world, Vnuc, psi); | ||
if (world.rank() == 0) { | ||
print(" Electric Field ", F); | ||
print(" Kinetic energy ", kinetic_energy); | ||
print(" Nuclear attraction energy ", nuclear_attraction_energy); | ||
print(" Total energy ", total_energy); | ||
} | ||
} | ||
|
||
int main(int argc, char** argv) { | ||
World& world = initialize(argc, argv); | ||
startup(world,argc,argv); | ||
std::cout.precision(6); | ||
|
||
run(world); | ||
|
||
world.gop.fence(); | ||
finalize(); | ||
return 0; | ||
} |