Skip to content

longspringcity/Pointnet2_PyTorch

 
 

Repository files navigation

Pointnet2/Pointnet++ PyTorch

  • Implemention of Pointnet2/Pointnet++ written in PyTorch.
  • Supports Multi-GPU via nn.DataParallel.
  • Supports PyTorch version >= 1.0.0. Use v1.0 for support of older versions of PyTorch.

See the official code release for the paper (in tensorflow), charlesq34/pointnet2, for official model definitions and hyper-parameters.

The custom ops used by Pointnet++ are currently ONLY supported on the GPU using CUDA.

Setup

  • Install python -- This repo is tested with {3.6, 3.7}

  • Install pytorch with CUDA -- This repo is tested with {1.4, 1.5}. It may work with versions newer than 1.5, but this is not guaranteed.

  • Install dependencies

    pip install -r requirements.txt
    

Example training

Install with: pip install -e .

There example training script can be found in pointnet2/train.py. The training examples are built using PyTorch Lightning and Hydra.

A classifion pointnet can be trained as

python pointnet2/train.py task=cls

# Or with model=msg for multi-scale grouping

python pointnet2/train.py task=cls model=msg

Similarly, semantic segmentation can be trained by changing the task to semseg

python pointnet2/train.py task=semseg

Multi-GPU training can be enabled by passing a list of GPU ids to use, for instance

python pointnet2/train.py task=cls gpus=[0,1,2,3]

Building only the CUDA kernels

pip install pointnet2_ops_lib/.

# Or if you would like to install them directly (this can also be used in a requirements.txt)

pip install "git+git://github.com/erikwijmans/Pointnet2_PyTorch.git#egg=pointnet2_ops&subdirectory=pointnet2_ops_lib"

Contributing

This repository uses black for linting and style enforcement on python code. For c++/cuda code, clang-format is used for style. The simplest way to comply with style is via pre-commit

pip install pre-commit
pre-commit install

Citation

@article{pytorchpointnet++,
      Author = {Erik Wijmans},
      Title = {Pointnet++ Pytorch},
      Journal = {https://github.com/erikwijmans/Pointnet2_PyTorch},
      Year = {2018}
}

@inproceedings{qi2017pointnet++,
    title={Pointnet++: Deep hierarchical feature learning on point sets in a metric space},
    author={Qi, Charles Ruizhongtai and Yi, Li and Su, Hao and Guibas, Leonidas J},
    booktitle={Advances in Neural Information Processing Systems},
    pages={5099--5108},
    year={2017}
}

About

PyTorch implementation of Pointnet2/Pointnet++

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Python 62.4%
  • Cuda 21.2%
  • C++ 16.2%
  • Objective-C 0.2%