Skip to content

Commit

Permalink
Built site for gh-pages
Browse files Browse the repository at this point in the history
  • Loading branch information
Quarto GHA Workflow Runner committed Sep 11, 2024
1 parent 5473b4a commit 60b4cdf
Show file tree
Hide file tree
Showing 4 changed files with 23 additions and 34 deletions.
2 changes: 1 addition & 1 deletion .nojekyll
Original file line number Diff line number Diff line change
@@ -1 +1 @@
463e5584
f04b7de9
35 changes: 12 additions & 23 deletions plot_trait_evolution.html

Large diffs are not rendered by default.

2 changes: 1 addition & 1 deletion search.json
Original file line number Diff line number Diff line change
Expand Up @@ -4,7 +4,7 @@
"href": "plot_trait_evolution.html",
"title": "Evolutionary lottery of skull and beak morphology",
"section": "",
"text": "Beak and skull shapes in birds of prey (“raptors”) are strongly coupled and largely controlled by size.\n\ngif provided by the awesome Jen Bright @MorphobeakGeek!\n\nIn this exercise we will use a github repo to collaboratively collate and simulate evolutionary trajectories for each participants’ species body size using a simple brownian motion evolutionary model. This assumes evolutionary steps to progress comletely at random. You could say:\n\n\n\nEach participant has created and contributed a file specifying the parameters required to simulate and plot their species evolutionary trajectory. We’ve collect all participants’ files in the master repo. Next we need to simulate species trajectories plot them up.\nParticipants will then get to see the skull and beak shape corresponding to their species relative body size!\n\n\n\n\nFirst we load the required packages and create some objects to compile data on trait evolution for each species.\n\nlibrary(dplyr)\nlibrary(ggplot2) #3.5.1\nlibrary(plotly) #4.10.4\nset.seed(1)\n\nt <- 0:100 # generate time vector\ndt <- NULL # generate object to compile time-series data\ncols <- NULL # generate object to compile trendline colours\n\n\n\n\n\nWe’ll use the parameters supplied in your scripts to generate brownian trait evolution trendline for each species.\n\n#getting the file names for everything except the template that has undefined values\nspp.files <- dir(\"params/\")[dir(\"params/\") != \"params_tmpl.R\"]\n\nfor(spp in spp.files){\n # source parameters for each species\n source(file.path(\"params\", spp))\n \n # generate trait evolution time-series and compile plotting data\n dt <- rbind(dt, data.frame(t, \n trait = c(0, rnorm(n = length(t) - 1, sd = sqrt(sig2)) |> cumsum()),\n species = species.name))\n cols <- c(cols, color)\n}\n\nInstalling package into '/home/runner/work/_temp/Library'\n(as 'lib' is unspecified)\n\n\nalso installing the dependencies 'miniUI', 'shinyjs'\n\n\nInstalling package into '/home/runner/work/_temp/Library'\n(as 'lib' is unspecified)\n\n\n\n\n\nUse the data generated to plot all species.\n\n# Specify the order of species based on the order of colors in cols to stop a mismatch in colours\ndt$species <- factor(dt$species, levels = unique(dt$species))\n\n# Create the ggplot object\np <- ggplot(data = dt, aes(x = t, y = trait, group = species, colour = species)) + \n geom_line() + \n scale_colour_manual(values = cols) \n\n# Plot the results\nggplotly(p)\n\n\n\n\n\n\n\n\n\n\n\nSkulls are organised from largest to smallest. The largest skulls are vulture-like, (e.g. no. 50, the Andean condor Vultur gryphus) and the smallest are falconet-like, (e.g. no. 1 Collared falconet Microhierax caerulescens)\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\nsessioninfo::session_info()\n\n─ Session info ───────────────────────────────────────────────────────────────\n setting value\n version R version 4.4.0 (2024-04-24)\n os Ubuntu 22.04.4 LTS\n system x86_64, linux-gnu\n ui X11\n language (EN)\n collate C.UTF-8\n ctype C.UTF-8\n tz UTC\n date 2024-09-11\n pandoc 2.9.2.1 @ /usr/bin/ (via rmarkdown)\n\n─ Packages ───────────────────────────────────────────────────────────────────\n package * version date (UTC) lib source\n cli 3.6.3 2024-06-21 [1] CRAN (R 4.4.0)\n colorspace 2.1-1 2024-07-26 [1] CRAN (R 4.4.0)\n crosstalk 1.2.1 2023-11-23 [1] CRAN (R 4.4.0)\n data.table 1.16.0 2024-08-27 [1] CRAN (R 4.4.0)\n digest 0.6.37 2024-08-19 [1] CRAN (R 4.4.0)\n dplyr * 1.1.4 2023-11-17 [1] any (@1.1.4)\n evaluate 0.24.0 2024-06-10 [1] CRAN (R 4.4.0)\n fansi 1.0.6 2023-12-08 [1] CRAN (R 4.4.0)\n fastmap 1.2.0 2024-05-15 [1] CRAN (R 4.4.0)\n generics 0.1.3 2022-07-05 [1] CRAN (R 4.4.0)\n ggplot2 * 3.5.1 2024-04-23 [1] CRAN (R 4.4.0)\n glue 1.7.0 2024-01-09 [1] CRAN (R 4.4.0)\n gtable 0.3.5 2024-04-22 [1] CRAN (R 4.4.0)\n htmltools 0.5.8.1 2024-04-04 [1] CRAN (R 4.4.0)\n htmlwidgets 1.6.4 2023-12-06 [1] CRAN (R 4.4.0)\n httr 1.4.7 2023-08-15 [1] CRAN (R 4.4.0)\n jsonlite 1.8.8 2023-12-04 [1] CRAN (R 4.4.0)\n knitr 1.48 2024-07-07 [1] CRAN (R 4.4.0)\n labeling 0.4.3 2023-08-29 [1] CRAN (R 4.4.0)\n lazyeval 0.2.2 2019-03-15 [1] CRAN (R 4.4.0)\n lifecycle 1.0.4 2023-11-07 [1] CRAN (R 4.4.0)\n magrittr 2.0.3 2022-03-30 [1] CRAN (R 4.4.0)\n munsell 0.5.1 2024-04-01 [1] CRAN (R 4.4.0)\n pillar 1.9.0 2023-03-22 [1] CRAN (R 4.4.0)\n pkgconfig 2.0.3 2019-09-22 [1] CRAN (R 4.4.0)\n plotly * 4.10.4 2024-01-13 [1] CRAN (R 4.4.0)\n purrr 1.0.2 2023-08-10 [1] CRAN (R 4.4.0)\n R6 2.5.1 2021-08-19 [1] CRAN (R 4.4.0)\n rlang 1.1.4 2024-06-04 [1] CRAN (R 4.4.0)\n rmarkdown 2.28 2024-08-17 [1] CRAN (R 4.4.0)\n scales 1.3.0 2023-11-28 [1] CRAN (R 4.4.0)\n sessioninfo 1.2.2 2021-12-06 [1] any (@1.2.2)\n tibble 3.2.1 2023-03-20 [1] CRAN (R 4.4.0)\n tidyr 1.3.1 2024-01-24 [1] CRAN (R 4.4.0)\n tidyselect 1.2.1 2024-03-11 [1] CRAN (R 4.4.0)\n utf8 1.2.4 2023-10-22 [1] CRAN (R 4.4.0)\n vctrs 0.6.5 2023-12-01 [1] CRAN (R 4.4.0)\n viridisLite 0.4.2 2023-05-02 [1] CRAN (R 4.4.0)\n withr 3.0.1 2024-07-31 [1] CRAN (R 4.4.0)\n xfun 0.47 2024-08-17 [1] CRAN (R 4.4.0)\n yaml 2.3.10 2024-07-26 [1] CRAN (R 4.4.0)\n\n [1] /home/runner/work/_temp/Library\n [2] /opt/R/4.4.0/lib/R/site-library\n [3] /opt/R/4.4.0/lib/R/library\n\n──────────────────────────────────────────────────────────────────────────────"
"text": "Beak and skull shapes in birds of prey (“raptors”) are strongly coupled and largely controlled by size.\n\ngif provided by the awesome Jen Bright @MorphobeakGeek!\n\nIn this exercise we will use a github repo to collaboratively collate and simulate evolutionary trajectories for each participants’ species body size using a simple brownian motion evolutionary model. This assumes evolutionary steps to progress comletely at random. You could say:\n\n\n\nEach participant has created and contributed a file specifying the parameters required to simulate and plot their species evolutionary trajectory. We’ve collect all participants’ files in the master repo. Next we need to simulate species trajectories plot them up.\nParticipants will then get to see the skull and beak shape corresponding to their species relative body size!\n\n\n\n\nFirst we load the required packages and create some objects to compile data on trait evolution for each species.\n\nlibrary(dplyr)\nlibrary(ggplot2) #3.5.1\nlibrary(plotly) #4.10.4\nset.seed(1)\n\nt <- 0:100 # generate time vector\ndt <- NULL # generate object to compile time-series data\ncols <- NULL # generate object to compile trendline colours\n\n\n\n\n\nWe’ll use the parameters supplied in your scripts to generate brownian trait evolution trendline for each species.\n\n#getting the file names for everything except the template that has undefined values\nspp.files <- dir(\"params/\")[dir(\"params/\") != \"params_tmpl.R\"]\n\nfor(spp in spp.files){\n # source parameters for each species\n source(file.path(\"params\", spp))\n \n # generate trait evolution time-series and compile plotting data\n dt <- rbind(dt, data.frame(t, \n trait = c(0, rnorm(n = length(t) - 1, sd = sqrt(sig2)) |> cumsum()),\n species = species.name))\n cols <- c(cols, color)\n}\n\n\n\n\nUse the data generated to plot all species.\n\n# Specify the order of species based on the order of colors in cols to stop a mismatch in colours\ndt$species <- factor(dt$species, levels = unique(dt$species))\n\n# Create the ggplot object\np <- ggplot(data = dt, aes(x = t, y = trait, group = species, colour = species)) + \n geom_line() + \n scale_colour_manual(values = cols) \n\n# Plot the results\nggplotly(p)\n\n\n\n\n\n\n\n\n\n\n\nSkulls are organised from largest to smallest. The largest skulls are vulture-like, (e.g. no. 50, the Andean condor Vultur gryphus) and the smallest are falconet-like, (e.g. no. 1 Collared falconet Microhierax caerulescens)\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\nsessioninfo::session_info()\n\n─ Session info ───────────────────────────────────────────────────────────────\n setting value\n version R version 4.4.0 (2024-04-24)\n os Ubuntu 22.04.4 LTS\n system x86_64, linux-gnu\n ui X11\n language (EN)\n collate C.UTF-8\n ctype C.UTF-8\n tz UTC\n date 2024-09-11\n pandoc 2.9.2.1 @ /usr/bin/ (via rmarkdown)\n\n─ Packages ───────────────────────────────────────────────────────────────────\n package * version date (UTC) lib source\n cli 3.6.3 2024-06-21 [1] CRAN (R 4.4.0)\n colorspace 2.1-1 2024-07-26 [1] CRAN (R 4.4.0)\n crosstalk 1.2.1 2023-11-23 [1] CRAN (R 4.4.0)\n data.table 1.16.0 2024-08-27 [1] CRAN (R 4.4.0)\n digest 0.6.37 2024-08-19 [1] CRAN (R 4.4.0)\n dplyr * 1.1.4 2023-11-17 [1] any (@1.1.4)\n evaluate 0.24.0 2024-06-10 [1] CRAN (R 4.4.0)\n fansi 1.0.6 2023-12-08 [1] CRAN (R 4.4.0)\n fastmap 1.2.0 2024-05-15 [1] CRAN (R 4.4.0)\n generics 0.1.3 2022-07-05 [1] CRAN (R 4.4.0)\n ggplot2 * 3.5.1 2024-04-23 [1] CRAN (R 4.4.0)\n glue 1.7.0 2024-01-09 [1] CRAN (R 4.4.0)\n gtable 0.3.5 2024-04-22 [1] CRAN (R 4.4.0)\n htmltools 0.5.8.1 2024-04-04 [1] CRAN (R 4.4.0)\n htmlwidgets 1.6.4 2023-12-06 [1] CRAN (R 4.4.0)\n httr 1.4.7 2023-08-15 [1] CRAN (R 4.4.0)\n jsonlite 1.8.8 2023-12-04 [1] CRAN (R 4.4.0)\n knitr 1.48 2024-07-07 [1] CRAN (R 4.4.0)\n labeling 0.4.3 2023-08-29 [1] CRAN (R 4.4.0)\n lazyeval 0.2.2 2019-03-15 [1] CRAN (R 4.4.0)\n lifecycle 1.0.4 2023-11-07 [1] CRAN (R 4.4.0)\n magrittr 2.0.3 2022-03-30 [1] CRAN (R 4.4.0)\n munsell 0.5.1 2024-04-01 [1] CRAN (R 4.4.0)\n pillar 1.9.0 2023-03-22 [1] CRAN (R 4.4.0)\n pkgconfig 2.0.3 2019-09-22 [1] CRAN (R 4.4.0)\n plotly * 4.10.4 2024-01-13 [1] CRAN (R 4.4.0)\n purrr 1.0.2 2023-08-10 [1] CRAN (R 4.4.0)\n R6 2.5.1 2021-08-19 [1] CRAN (R 4.4.0)\n rlang 1.1.4 2024-06-04 [1] CRAN (R 4.4.0)\n rmarkdown 2.28 2024-08-17 [1] CRAN (R 4.4.0)\n scales 1.3.0 2023-11-28 [1] CRAN (R 4.4.0)\n sessioninfo 1.2.2 2021-12-06 [1] any (@1.2.2)\n tibble 3.2.1 2023-03-20 [1] CRAN (R 4.4.0)\n tidyr 1.3.1 2024-01-24 [1] CRAN (R 4.4.0)\n tidyselect 1.2.1 2024-03-11 [1] CRAN (R 4.4.0)\n utf8 1.2.4 2023-10-22 [1] CRAN (R 4.4.0)\n vctrs 0.6.5 2023-12-01 [1] CRAN (R 4.4.0)\n viridisLite 0.4.2 2023-05-02 [1] CRAN (R 4.4.0)\n withr 3.0.1 2024-07-31 [1] CRAN (R 4.4.0)\n xfun 0.47 2024-08-17 [1] CRAN (R 4.4.0)\n yaml 2.3.10 2024-07-26 [1] CRAN (R 4.4.0)\n\n [1] /home/runner/work/_temp/Library\n [2] /opt/R/4.4.0/lib/R/site-library\n [3] /opt/R/4.4.0/lib/R/library\n\n──────────────────────────────────────────────────────────────────────────────"
},
{
"objectID": "plot_trait_evolution.html#skulls-find-the-skull-associated-with-your-species",
Expand Down
18 changes: 9 additions & 9 deletions sitemap.xml
Original file line number Diff line number Diff line change
Expand Up @@ -2,38 +2,38 @@
<urlset xmlns="http://www.sitemaps.org/schemas/sitemap/0.9">
<url>
<loc>https://lmu-osc.github.io/Collaborative-RStudio-GitHub/plot_trait_evolution.html</loc>
<lastmod>2024-09-11T09:06:54.395Z</lastmod>
<lastmod>2024-09-11T09:12:00.470Z</lastmod>
</url>
<url>
<loc>https://lmu-osc.github.io/Collaborative-RStudio-GitHub/clone.html</loc>
<lastmod>2024-09-11T09:06:54.387Z</lastmod>
<lastmod>2024-09-11T09:12:00.458Z</lastmod>
</url>
<url>
<loc>https://lmu-osc.github.io/Collaborative-RStudio-GitHub/pull-request.html</loc>
<lastmod>2024-09-11T09:06:54.395Z</lastmod>
<lastmod>2024-09-11T09:12:00.470Z</lastmod>
</url>
<url>
<loc>https://lmu-osc.github.io/Collaborative-RStudio-GitHub/index.html</loc>
<lastmod>2024-09-11T09:06:54.395Z</lastmod>
<lastmod>2024-09-11T09:12:00.470Z</lastmod>
</url>
<url>
<loc>https://lmu-osc.github.io/Collaborative-RStudio-GitHub/push.html</loc>
<lastmod>2024-09-11T09:06:54.395Z</lastmod>
<lastmod>2024-09-11T09:12:00.470Z</lastmod>
</url>
<url>
<loc>https://lmu-osc.github.io/Collaborative-RStudio-GitHub/fork.html</loc>
<lastmod>2024-09-11T09:06:54.387Z</lastmod>
<lastmod>2024-09-11T09:12:00.458Z</lastmod>
</url>
<url>
<loc>https://lmu-osc.github.io/Collaborative-RStudio-GitHub/merge.html</loc>
<lastmod>2024-09-11T09:06:54.395Z</lastmod>
<lastmod>2024-09-11T09:12:00.470Z</lastmod>
</url>
<url>
<loc>https://lmu-osc.github.io/Collaborative-RStudio-GitHub/commit.html</loc>
<lastmod>2024-09-11T09:06:54.387Z</lastmod>
<lastmod>2024-09-11T09:12:00.458Z</lastmod>
</url>
<url>
<loc>https://lmu-osc.github.io/Collaborative-RStudio-GitHub/pull-upstream.html</loc>
<lastmod>2024-09-11T09:06:54.395Z</lastmod>
<lastmod>2024-09-11T09:12:00.470Z</lastmod>
</url>
</urlset>

0 comments on commit 60b4cdf

Please sign in to comment.