HNSW implemented by python.
Distance | parameter | Equation |
---|---|---|
Squared L2 | 'l2' | d = sum((Ai-Bi)^2) |
Cosine similarity | 'cosine' | d = 1.0 - sum(Ai*Bi) / sqrt(sum(Ai*Ai) * sum(Bi*Bi)) |
import time
from progressbar import *
import pickle
from random_example import HNSW
import numpy as np
dim = 200
num_elements = 10000
data = np.array(np.float32(np.random.random((num_elements, dim))))
hnsw = HNSW('cosine', m0=16, ef=128)
widgets = ['Progress: ',Percentage(), ' ', Bar('#'),' ', Timer(), ' ', ETA()]
# show progressbar
pbar = ProgressBar(widgets=widgets, maxval=train_len).start()
for i in range(len(data)):
hnsw.add(data[i])
pbar.update(i + 1)
pbar.finish()
# save index
with open('glove.ind', 'wb') as f:
picklestring = pickle.dump(hnsw, f, pickle.HIGHEST_PROTOCOL)
# load index
fr = open('glove.ind','rb')
hnsw_n = pickle.load(fr)
add_point_time = time.time()
idx = hnsw_n.search(np.float32(np.random.random((1, 200))), 10)
search_time = time.time()
print("Searchtime: %f" % (search_time - add_point_time))