-
Notifications
You must be signed in to change notification settings - Fork 8
Database updating tutorial: adding genomes
This is a tutorial for updating >= Struo2-generated custom database.
Please first read the README for instructions on general setup of Struo2.
This tutorial will use the following:
- A small set of reference genomes
- GTDB taxonomy
- NCBI taxonomy is an alternative
- The databases generated from the database generation tutorial
- See the ftp site for custom GTDB databases
- Only update Kraken2/Bracken databases will be generated via this tutorial.
- For adding genes, see https://github.com/leylabmpi/Struo2/wiki/Database-updating-tutorial:-adding-genes
This tutorial assumes that you've created your custom databases in the ./data/
directory.
# Create a directory to hold all of the necessary Struo2 data files
# The directory location can be anywhere on your file system
OUTDIR=./data/
mkdir -p $OUTDIR
These are the genomes that you will add to the existing databases.
wget --directory-prefix $OUTDIR http://ftp.tue.mpg.de/ebio/projects/struo2/dev_data/genomes/GTDBr95_n5.tar.gz
tar -pzxvf $OUTDIR/GTDBr95_n5.tar.gz --directory $OUTDIR
This table lists all of the reference genomes. See this example table.
Note: you only need the following columns in the table (all others are ignored):
- samples_col: 'ncbi_organism_name'
- accession_col: 'accession'
- fasta_file_path_col: 'fasta_file_path'
- taxID_col: 'gtdb_taxid'
- taxonomy_col: 'gtdb_taxonomy'
The snakemake pipeline config is a bit different for updating a database versus generating a new database.
Below is an example config:
#-- email notifications of pipeline success/failure (use "Skip" to deactivate) --#
email: None
#-- databases to update --#
# Replace "Create" with "Skip" to skip creation of any of these
# Note that braken relies on the kraken2 database
databases:
kraken2: Create
bracken: Create
genes: Skip
humann3_bowtie2: Skip
humann3_diamond: Skip
#-- Input --#
#--- If just a set of gene sequences to add ---#
# If you have nucleotide/amino-acid gene sequences formatted for humann
# If translate = True, missing nuc or AA seqs will be (rev)translated from the other, else seqs not used
new_genes: # <-- skipping for this tutorial, since we are just adding new genomes
amino_acid: Skip #data/UniRef50/genome_reps_filtered.faa.gz
nucleotide: Skip #data/UniRef50/genome_reps_filtered.fna.gz
metadata: Skip #data/genome_reps_filtered.txt.gz
translate: False
#--- If a set of genomes to add ---#
# file listing samples and associated data
samples_file: data/GTDBr95_n10/GTDBr95_n5.tsv
## column names in samples table
samples_col: 'ncbi_organism_name'
accession_col: 'accession'
fasta_file_path_col: 'fasta_file_path'
taxID_col: 'gtdb_taxid' # or 'ncbi_species_taxid'
taxonomy_col: 'gtdb_taxonomy' # or 'ncbi_taxonomy'
# Saved databases that will be updated
kraken2_db:
library: tests/output_GTDBr95_n10/kraken2/library/
taxonomy: tests/output_GTDBr95_n10/kraken2/taxonomy/
genes_db:
genes:
mmseqs_db: tests/output_GTDBr95_n10/genes/genes_db.tar.gz
amino_acid: tests/output_GTDBr95_n10/genes/genome_reps_filtered.faa.gz
nucleotide: tests/output_GTDBr95_n10/genes/genome_reps_filtered.fna.gz
metadata: tests/output_GTDBr95_n10/genes/genome_reps_filtered.txt.gz
cluster:
mmseqs_db: tests/output_GTDBr95_n10/genes/cluster/clusters_db.tar.gz
humann_db:
query:
hits: tests/output_GTDBr95_n10/humann3/annotation_hits.gz
cluster:
reps: tests/output_GTDBr95_n10/genes/cluster/clusters_reps.faa.gz
membership: tests/output_GTDBr95_n10/genes/cluster/clusters_membership.tsv.gz
#-- Output --#
# output location
output_dir: tests/output_GTDBr95_n10-n5/
# Name of UniRef clustering (uniref90 or uniref50)
## "uniref90" highly recommended
uniref_name: uniref50
# Name of the humann3 diamond database to create
## This must match naming allowed by humann3
dmnd_name: uniref50_201901.dmnd # UniRef90 is recommended
# Index mapping UniRef90 clusters to UniRef50 (saves time vs re-annotating)
## Skip if annotating with UniRef50
cluster_idx: data/uniref50-90.pkl
# temporary file directory (your username will be added automatically)
tmp_dir: tmp/db_update_tmp/
#-- if custom NCBI/GTDB taxdump files, "Skip" if standard NCBI taxdump --#
# Used for kraken taxonomy & metaphlan
names_dmp: data/taxdump/names.dmp
nodes_dmp: data/taxdump/nodes.dmp
#-- keep intermediate files required for re-creating DBs (eg., w/ more genomes) --#
# If "True", the intermediate files are saved to `output_dir`
# Else, the intermediate files are temporarily stored in `temp_folder`
keep_intermediate: True
#-- software parameters --#
# `vsearch_per_genome` = per-genome gene clustering
# for humann3, use either mmseqs or diamond (mmseqs gets priority if neither skipped)
# for humann3::mmseqs_search::run, --num-iterations must be >=2
params:
ionice: -c 3
bracken:
build_kmer: 35
build_read_lens:
- 100
- 150
genes:
prodigal: ""
vsearch_per_genome: --id 0.97 --strand both --qmask none --fasta_width 0
mmseqs_cluster_update: --min-seq-id 0.9 -c 0.8 -s 4.0
humann3:
batches: 2
filter_existing: --min-pident 0 # any existing genes w/ < cutoff with be re-queried
mmseqs_search:
db: data/mmseqs2/uniref50 # UniRef90 is recommended!
index: -s 6
run: -e 1e-3 --max-accept 1 --max-seqs 100 --num-iterations 2 --start-sens 1 --sens-steps 3 -s 6
diamond:
db: Skip #data/uniref50_201901.dmnd # UniRef90 is recommended!
run: --evalue 1e-3 --query-cover 80 --id 90 --max-target-seqs 1 --block-size 4 --index-chunks 2
propagate_annotations: --min-cov 80 --min-pident 90
#-- snakemake pipeline --#
pipeline:
snakemake_folder: ./
script_folder: ./bin/scripts/
name: Struo2_db-update
config: update
See here for general notes about the config, regardless of database creation or updating.
-
kraken2_db:
,genes_db:
, andhumann_db:
specify the locations for the existing database files- See the database generation tutorial for how to generate the files
- WARNING: use a different
output_dir:
other than where the existing databases are located; otherwise, the database files may be over-written!
See the snakemake docs for general instructions.
First, a dry run:
snakemake --use-conda -j -Fqn
Now, an actual run with 4 cores:
snakemake --use-conda -j 2 -F
See the README for running snakemake on a cluster (recommended).
See the README for details on the output.
A good quick sanity check is to compare the size of the updated databases versus the size of the original database files. The updated file sizes should be larger.