Skip to content

Custom V-net architecture for Medical Image segmentation of the pancreas and pancreatic tumours from CT scans.

Notifications You must be signed in to change notification settings

leslie-zi-pan/V-net-Medical-Image-Segmentation-Pancreas-Cancer

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

11 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

V-net-Medical-Image-Segmentation-Pancreas-Cancer

Custom V-net architecture for Medical Image segmentation of the pancreas and pancreatic tumours from CT scans.

Data not uploaded due to size and confidentiality.

The data consisted of 281 training images, with its respective labels, and 129 testing data Trained up to ~340 Epochs.

Pre-augmented data training results:

image image

Post augmentation training results(elastic and affine):

image image

Hyper-parameter tuning graphs:

image image

Example Patch based training results:

image

Whole image results not as good as epected. Patch based training used due to resource limitations. Improvements to results include use of 2D training with spatial recognition for better resource optimization and preventing patchy predictions on whole image.

References: F. Milletari, N. Navab, and S. A. Ahmadi, “V-Net: Fully convolutional neural networks for volumetric medical image segmentation,” Proc. - 2016 4th Int. Conf. 3D Vision, 3DV 2016, pp. 565–571, 2016, doi: 10.1109/3DV.2016.79.

About

Custom V-net architecture for Medical Image segmentation of the pancreas and pancreatic tumours from CT scans.

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages