Skip to content

Commit

Permalink
Merge pull request #37 from sorgfresser/add-mcts-agent
Browse files Browse the repository at this point in the history
feat: Add MCTS agent
  • Loading branch information
lenianiva authored Nov 12, 2024
2 parents 92a50b0 + 0ba6927 commit 70544d4
Showing 1 changed file with 251 additions and 2 deletions.
253 changes: 251 additions & 2 deletions pantograph/search.py
Original file line number Diff line number Diff line change
@@ -1,9 +1,10 @@
import random
from abc import abstractmethod
import time
from dataclasses import dataclass
from typing import Optional, Self
from typing import Optional, Self, List
import collections, unittest

from math import log, sqrt
from pantograph.server import Server, TacticFailure, ServerError
from pantograph.expr import Expr, Tactic, GoalState

Expand All @@ -15,12 +16,20 @@ class SearchState:
parent: Optional[Self]
parent_goal_id: Optional[int]
priorities: list[float]
children: Optional[List[Self]] = None
tested_tactics: Optional[List[Tactic]] = None
total_value: Optional[float] = None
tactic_feedback: Optional[str] = None

def __post_init__(self):
assert len(self.priorities) == len(self.goal_state.goals)
self.solved = [False for _ in self.goal_state.goals]
self.trials = [0 for _ in self.goal_state.goals]
self.tested_tactics = [] if self.tested_tactics is None else self.tested_tactics
self.children = [] if self.children is None else self.children
self.visit_count = 1
self.exhausted = False
self.subtree_exhausted = False

@property
def next_goal_id(self) -> int:
Expand Down Expand Up @@ -180,6 +189,148 @@ def search(self,
)


class MCTSAgent(Agent):
"""
An agent interface for proof search using monte carlo tree search
"""

@abstractmethod
def next_tactic(
self,
state: GoalState,
goal_id: int,
tested: Optional[List[Tactic]] = None,
) -> Optional[Tactic]:
"""
Implement this function to generate the next tactic for a goal given tactics already tested
"""

@abstractmethod
def reset(self):
"""
Called after search
"""

@abstractmethod
def estimate(self, state: SearchState) -> SearchState:
"""
Implement this function to estimate the value of a state
"""

@abstractmethod
def select(self, state: SearchState) -> list[SearchState]:
"""
Implement this function to select the best node within the subtree of the state.
Returns the path to the selected node from the given state.
"""

def backup(self, states: list[SearchState], value: float):
"""
Backup value of the state at the end of the states list.
"""
for state in states:
state.total_value += value
state.visit_count += 1
state.subtree_exhausted = all(child.subtree_exhausted for child in state.children) and state.exhausted

def search(self,
server: Server,
goal_state: GoalState,
max_steps: int = 100,
max_trials_per_goal: int = 5,
verbose: bool = False) -> SearchResult:
"""
Executes proof search on this state
"""

assert server.is_automatic(), "Search must be run in automatic mode"

n_goals_root = len(goal_state.goals)
time_start = time.time()

initial_state = SearchState(
goal_state=goal_state,
parent=None,
parent_goal_id=None,
priorities=[0.0 for _ in goal_state.goals]
)
initial_state = self.estimate(initial_state)
search_root = initial_state

for i_step in range(max_steps):
search_trajectory = self.select(search_root)
search_state = search_trajectory[-1]
assert isinstance(search_state, SearchState)

if search_state.is_solved:
return SearchResult(
n_goals_root=n_goals_root,
duration=time.time() - time_start,
success=True,
steps=i_step,
)

# Find the unsolved goal with the highest priority
goal_id = search_state.next_goal_id

if search_state.trials[goal_id] > max_trials_per_goal:
# force halt the search
tactic = None
else:
# Generate tactic for this goal
tactic = self.next_tactic(search_state.goal_state, goal_id, search_state.tested_tactics)

if verbose:
print(f"Next tactic: {tactic}")
if not tactic:
# resets the feedback
search_state.tactic_feedback = None
search_state.exhausted = True
search_state.subtree_exhausted = all(child.subtree_exhausted for child in search_state.children)
continue
assert tactic not in search_state.tested_tactics, "Tactic already seen!"
search_state.tested_tactics.append(tactic)

try:
search_state.trials[goal_id] += 1
state = search_state.goal_state
if verbose:
print(f"{state.state_id}.{goal_id}: {tactic} on {search_state.goal_state.goals[goal_id]}")
next_goal_state = server.goal_tactic(search_state.goal_state, goal_id, tactic)
# Generate priorities for the next goal state
priorities = [0.0 for _ in next_goal_state.goals] \
if len(next_goal_state.goals) <= 1 else \
self.guidance(next_goal_state)
parent = -1
next_state = SearchState(
goal_state=next_goal_state,
parent=parent,
parent_goal_id=goal_id,
priorities=priorities
)
next_state = self.estimate(next_state)
search_state.children.append(next_state)
self.backup(search_trajectory, next_state.total_value)
except TacticFailure as t:
if verbose:
print(f"Tactic failed: {t}")
search_state.tactic_feedback = str(t)
# try the next tactic. this one failed
except ServerError as e:
raise RuntimeError(f"While executing tactic: {tactic}") from e

if verbose:
print("Search iteration limit exhausted")

self.reset()
return SearchResult(
n_goals_root=n_goals_root,
duration=time.time() - time_start,
success=False,
steps=max_steps,
)


class DumbAgent(Agent):

def __init__(self):
Expand Down Expand Up @@ -221,6 +372,79 @@ def next_tactic(
self.goal_tactic_id_map[key] = i + 1
return tactics[i]

class DumbMCTSAgent(MCTSAgent):
def __init__(self):
super().__init__()

self.goal_tactic_id_map = collections.defaultdict(lambda : 0)
self.intros = [
"intro",
]
self.tactics = [
"intro h",
"cases h",
"apply Or.inl",
"apply Or.inr",
]
self.no_space_tactics = [
"assumption",
]
self.c = 0.6

def estimate(self, state: SearchState) -> SearchState:
state.total_value = random.random()
return state

def select(self, state: SearchState) -> list[SearchState]:
"""
UCB scoring with taking the current state as one option, i.e. one child
"""
state_trajectory = [state]
current_state = state
current_state_ucb = (state.total_value / state.visit_count) + self.c * sqrt((log(state.visit_count) / state.visit_count))
while current_state.children:
avg_val = [child.total_value / child.visit_count for child in current_state.children]
visit_portions = [sqrt(log(current_state.visit_count) / child.visit_count) for child in current_state.children]
ucbs = [avg + self.c * visit for avg, visit in zip(avg_val, visit_portions, strict=True)]
child_idcs = [idx for idx in range(len(current_state.children)) if not current_state.children[idx].subtree_exhausted]
if not child_idcs:
return state_trajectory
child_idx = child_idcs[0]
for i in child_idcs:
if ucbs[i] > ucbs[child_idx]:
child_idx = i
if ucbs[child_idx] < current_state_ucb and not current_state.exhausted:
return state_trajectory
current_state_ucb = ucbs[child_idx]
current_state = current_state.children[child_idx]
state_trajectory.append(current_state)
return state_trajectory

def next_tactic(
self,
state: GoalState,
goal_id: int,
tested: Optional[List[Tactic]] = None
) -> Optional[Tactic]:
key = (state.state_id, goal_id)
i = self.goal_tactic_id_map[key]
target = state.goals[goal_id].target
if target.startswith('∀'):
tactics = self.intros
elif ' ' in target:
tactics = self.tactics
else:
tactics = self.no_space_tactics

if i >= len(tactics):
return None
self.goal_tactic_id_map[key] = i + 1
while tactics[i] in tested:
i += 1
if i >= len(tactics):
return None
return tactics[i]


class TestSearch(unittest.TestCase):

Expand All @@ -246,6 +470,31 @@ def test_solve_big(self):
verbose=False)
self.assertTrue(flag)

class TestMCTSSearch(unittest.TestCase):

def test_solve(self):

server = Server()
agent = DumbMCTSAgent()
goal_state = server.goal_start("∀ (p q: Prop), p -> p")
flag = agent.search(
server=server,
goal_state=goal_state,
verbose=False)
#flag = agent.search(server=server, target="∀ (p q: Prop), Or p q -> Or q p", verbose=True)
self.assertTrue(flag)
def test_solve_big(self):

server = Server()
agent = DumbMCTSAgent()
goal_state = server.goal_start("∀ (p q: Prop), Or p q -> Or q p")
flag = agent.search(
server=server,
goal_state=goal_state,
max_steps=200,
verbose=False)
self.assertTrue(flag)


if __name__ == '__main__':
unittest.main()

0 comments on commit 70544d4

Please sign in to comment.