forked from robince/partial-info-decomp
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge branch 'master' of github.com:robince/partial-info-decomp
- Loading branch information
Showing
2 changed files
with
114 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,91 @@ | ||
function Id = calc_pi_Idep_mvn(C, varsizes); | ||
% calc_pi_Idep_mvn(C, varsizes) | ||
% Calculate bivariate PID using Idep approach (James et al. 2017) for | ||
% Gaussians (Kay & Ince 2018). | ||
% C is the full joint covariance matrix with variables in order | ||
% X0 (first predictor), X1 (second predictor), S (target) | ||
% varsizes is a length 3 vector containing the dimensionality of each of | ||
% the above. | ||
% Returns a length 4 vector containing | ||
% [Red Unq_1 Unq_2 Syn] | ||
% | ||
% James et al. 2017 http://arxiv.org/abs/1709.06653 | ||
% Kay & Ince 2018 | ||
|
||
vs = varsizes; | ||
if length(vs)~=3 | ||
error('calc_pi_Idep_mvn: only bivariate PID supported') | ||
end | ||
if sum(vs)~=size(C,1) || size(C,1)~=size(C,2) | ||
error('calc_pi_Idep_mvn: problem with variable specifications') | ||
end | ||
|
||
% variable indexes | ||
xidx = 1:vs(1); | ||
yidx = (vs(1)+1):(vs(1)+vs(2)); | ||
zidx = (vs(1)+vs(2)+1):(vs(1)+vs(2)+vs(3)); | ||
|
||
% extract blockwise covariance components | ||
Cxx = C(xidx,xidx); | ||
Cyy = C(yidx,yidx); | ||
Czz = C(zidx,zidx); | ||
Cxy = C(xidx,yidx); | ||
Cxz = C(xidx,zidx); | ||
Cyz = C(yidx,zidx); | ||
|
||
% cholesky square root | ||
chCxx = chol(Cxx); | ||
chCyy = chol(Cyy); | ||
chCzz = chol(Czz); | ||
|
||
% Kay & Ince eq. D2 | ||
P = pinv(chCxx)*Cxy*pinv(chCyy); | ||
Q = pinv(chCxx)*Cxz*pinv(chCzz); | ||
R = pinv(chCyy)*Cyz*pinv(chCzz); | ||
|
||
% standard mutual informations | ||
mivs = [vs(1)+vs(2) vs(3)]; | ||
IXY = gauss_mi(C,mivs); | ||
IY = gauss_mi(C([yidx zidx],[yidx zidx]), vs(2:3)); | ||
Ct = zeros(vs(1)+vs(3)); | ||
tzidx = (vs(1)+1):(vs(1)+vs(3)); | ||
Ct(xidx,xidx) = Cxx; | ||
Ct(tzidx,tzidx) = Czz; | ||
Ct(xidx,tzidx) = Cxz; | ||
Ct(tzidx,xidx) = Cxz'; | ||
IX = gauss_mi(Ct, [vs(1) vs(3)]); | ||
|
||
halflog2det = @(X) sum(log2(diag(chol(X)))); | ||
% Dependency lattice edges (Kay & Ince Table 9) | ||
b = IX; | ||
|
||
inum = halflog2det(eye(vs(1)) - R*Q'*Q*R'); | ||
iden = halflog2det(eye(vs(2))-Q'*Q) + halflog2det(eye(vs(2))-R'*R); | ||
i = inum - iden - IY; | ||
|
||
knum = halflog2det(eye(vs(1)) - P'*P); | ||
Ct = zeros(sum(vs)); | ||
Ct(xidx,xidx) = eye(vs(1)); | ||
Ct(yidx,yidx) = eye(vs(2)); | ||
Ct(zidx,zidx) = eye(vs(3)); | ||
Ct(xidx,yidx) = P; | ||
Ct(yidx,xidx) = P'; | ||
Ct(xidx,zidx) = Q; | ||
Ct(zidx,xidx) = Q'; | ||
Ct(yidx,zidx) = R; | ||
Ct(zidx,yidx) = R'; | ||
kden = halflog2det(Ct); | ||
k = knum - kden - IY; | ||
|
||
% fill out PID | ||
Xunq = min([b i k]); | ||
Id = zeros(1,4); | ||
Id(2) = Xunq; | ||
Id(1) = IX - Xunq; | ||
Id(3) = IY - Id(1); | ||
Id(4) = IXY - sum(Id(1:3)); | ||
|
||
|
||
|
||
|
||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,23 @@ | ||
function I = gauss_mi(C, varsizes) | ||
|
||
% C = C + 0.1*eye(size(C)); | ||
vs = varsizes; | ||
if length(vs)>2 | ||
error('bivariate MI only') | ||
end | ||
if sum(vs) ~= size(C,1) | ||
error('variables incorrectly specified') | ||
end | ||
|
||
CX = C(1:vs(1),1:vs(1)); | ||
CY = C((vs(1)+1):end, (vs(1)+1):end); | ||
|
||
% use closed form expression | ||
chX = chol(CX); | ||
chY = chol(CY); | ||
chXY = chol(C); | ||
% normalisations cancel for information | ||
HX = sum(log(diag(chX))); % + 0.5*Nvarx*log(2*pi*exp(1)); | ||
HY = sum(log(diag(chY))); % + 0.5*Nvary*log(2*pi*exp(1)); | ||
HXY = sum(log(diag(chXY))); % + 0.5*(Nvarx+Nvary)*log(2*pi*exp(1)); | ||
I = (HX + HY - HXY) / log(2); |