Skip to content

Commit

Permalink
new supp figures added - wgcna comparisons, fnr
Browse files Browse the repository at this point in the history
  • Loading branch information
princyparsana committed Feb 12, 2019
1 parent 63f3dbf commit 6ca7d93
Show file tree
Hide file tree
Showing 14 changed files with 594 additions and 0 deletions.
68 changes: 68 additions & 0 deletions publication_figures/src/makefig3old.R
Original file line number Diff line number Diff line change
@@ -0,0 +1,68 @@
library(cowplot)
library(ggplot2)
theme_set(theme_cowplot(font_size=9))
lambda <- seq(0.3,1.0, length.out = 50)
cat.plot <- c("uncorrected", "RIN", "multi-covariate", "PC")
# select category to plot
select_category <- function(category_name, pr_table){
pr_table <- pr_table[which(pr_table$type %in% category_name),]
pr_table$type <- factor(pr_table$type, levels = category_name)
pr_table$lambda <- rep(lambda,length(category_name))
pr_table
}
plot.thyroid <- readRDS("/work-zfs/abattle4/parsana/networks_correction/results/PR/pr_density_glasso_canonical_thyroid.Rds")
plot.thyroid <- select_category(cat.plot, plot.thyroid)
plot.thyroid <- ggplot(plot.thyroid, aes(x = lambda, y = 1-precision, colour = type)) + geom_point(size =0.3) +
xlab("lambda") + ylab("FDR")+ggtitle("Thyroid")
plot.lung <- readRDS("/work-zfs/abattle4/parsana/networks_correction/results/PR/pr_density_glasso_canonical_lung.Rds")
plot.lung <- select_category(cat.plot, plot.lung)
plot.lung <- ggplot(plot.lung, aes(x = lambda, y = 1-precision, colour = type)) + geom_point(size = 0.3) +
xlab("lambda") + ylab("FDR")+ggtitle("Lung")
plot.blood <- readRDS("/work-zfs/abattle4/parsana/networks_correction/results/PR/pr_density_glasso_canonical_blood.Rds")
plot.blood <- select_category(cat.plot, plot.blood)
plot.blood <- ggplot(plot.blood, aes(x = lambda, y = 1-precision, colour = type)) + geom_point(size = 0.3) +
xlab("lambda") + ylab("FDR")+ggtitle("Whole Blood")
plot.skin <- readRDS("/work-zfs/abattle4/parsana/networks_correction/results/PR/pr_density_glasso_canonical_skin.Rds")
plot.skin <- select_category(cat.plot, plot.skin)
plot.skin <- ggplot(plot.skin, aes(x = lambda, y = 1-precision, colour = type)) + geom_point(size = 0.3) +
xlab("lambda") + ylab("FDR")+ggtitle("skin")
plot.muscle <- readRDS("/work-zfs/abattle4/parsana/networks_correction/results/PR/pr_density_glasso_canonical_muscle.Rds")
plot.muscle <- select_category(cat.plot, plot.muscle)
plot.muscle <- ggplot(plot.muscle, aes(x = lambda, y = 1-precision, colour = type)) + geom_point(size = 0.3) +
xlab("lambda") + ylab("FDR")+ggtitle("muscle")
plot.subcutaneous <- readRDS("/work-zfs/abattle4/parsana/networks_correction/results/PR/pr_density_glasso_canonical_subcutaneous.Rds")
plot.subcutaneous <- select_category(cat.plot, plot.subcutaneous)
plot.subcutaneous <- ggplot(plot.subcutaneous, aes(x = lambda, y = 1-precision, colour = type)) + geom_point(size = 0.3) +
xlab("lambda") + ylab("FDR")+ggtitle("subcutaneous")
plot.artery <- readRDS("/work-zfs/abattle4/parsana/networks_correction/results/PR/pr_density_glasso_canonical_artery.Rds")
plot.artery <- select_category(cat.plot, plot.artery)
plot.artery <- ggplot(plot.artery, aes(x = lambda, y = 1-precision, colour = type)) + geom_point(size = 0.3) +
xlab("lambda") + ylab("FDR")+ggtitle("artery")
plot.nerve <- readRDS("/work-zfs/abattle4/parsana/networks_correction/results/PR/pr_density_glasso_canonical_nerve.Rds")
plot.nerve <- select_category(cat.plot, plot.nerve)
plot.nerve <- ggplot(plot.nerve, aes(x = lambda, y = 1-precision, colour = type)) + geom_point(size = 0.3) +
xlab("lambda") + ylab("FDR")+ggtitle("nerve")
###############################
fig3 <- plot_grid(plot.blood + xlim(0.3,1.0) + ylim(0, 1) + theme(legend.position="none"),
plot.lung + xlim(0.3,1.0) + ylim(0, 1) + theme(legend.position="none"),
# plot.muscle + xlim(0.3,1.0) + ylim(0, 1) + theme(legend.position="none"),
# plot.artery + xlim(0.3,1.0) + ylim(0, 1) + theme(legend.position="none"),
# plot.skin + xlim(0.3,1.0) + ylim(0, 1) + theme(legend.position="none"),
# plot.nerve + xlim(0.3,1.0) + ylim(0, 1) + theme(legend.position="none"),
# plot.subcutaneous + xlim(0.3,1.0) + ylim(0, 1) + theme(legend.position="none"),
plot.thyroid + xlim(0.3,1.0) + ylim(0, 1) + theme(legend.position="none"),
align = 'vh',
labels = c("a", "b", "c"),
hjust = -1,
nrow = 1
)
legend <- get_legend(plot.lung +
theme(legend.key = element_rect(color = "black", linetype = "solid", size = 0.5),
legend.key.size = unit(0.3, "cm"), legend.key.height=unit(1.5,"line")) +
guides(colour = guide_legend(override.aes = list(size= 1))))
fig3a <- plot_grid( fig3, legend, rel_widths = c(3, .4))

pdf("/work-zfs/abattle4/parsana/networks_correction/publication_figures/fig3.pdf", height = 2.5, width = 7.2)
print(fig3a)
dev.off()

86 changes: 86 additions & 0 deletions publication_figures/src/supp_fig13.R
Original file line number Diff line number Diff line change
@@ -0,0 +1,86 @@
library(cowplot)
library(ggplot2)
library(parallel)
library(igraph)
library(reshape2)
theme_set(theme_cowplot(font_size=9))

create.igraph <- function(network){
# network[which(network != 0)] <- 1
diag(network) <- 0
network[network!=0] <- 1
graph_from_adjacency_matrix(network, mode = "undirected")
}


fn <- dir("../../networks/", recursive=T, full.names = T)
fn <- fn[grep("glasso", fn)]
fn <- fn[grep(paste("raw", "rin", "mc", "/pc/", sep = "|"), fn)]

igraph_net <- mclapply(fn, function(x){
print(x)
load(x)
net.igraph <- lapply(dat.net[1:10], function(eachNet){
eachNet[lower.tri(eachNet)] <- t(eachNet)[lower.tri(eachNet)]
create.igraph(eachNet)
})
net.igraph
}, mc.cores = 16)

# igraph_net <- lapply(igraph_net, function(x,y){
# y <- y
# this_net <- lapply(x, function(thisx, thisy){
# V(thisx)$name <- thisy
# thisx
# }, y)
# this_net
# }, dat.gene.symbol$gene_symbol)


nodes_with_20 <- mclapply(igraph_net, function(x)
sapply(x, function(y) sum(degree(y) >=20)), mc.cores = 16)

names(nodes_with_20) <- fn

raw <- nodes_with_20[grep("raw", fn)]
rin <- nodes_with_20[grep("rin", fn)]
mc <- nodes_with_20[grep("mc", fn)]
pc <- nodes_with_20[grep("/pc/", fn)]

hub_net <- melt(data.frame(raw, rin, mc, pc))

hub_net$tissue <- NA
hub_net$tissue[grep("Artery", hub_net$variable)] <- "Tibial Artery"
hub_net$tissue[grep("Blood", hub_net$variable)] <- "Whole Blood"
hub_net$tissue[grep("Lung", hub_net$variable)] <- "Lung"
hub_net$tissue[grep("Muscle", hub_net$variable)] <- "Muscle"
hub_net$tissue[grep("Subcutaneous", hub_net$variable)] <- "Adipose Subcutaneous"
hub_net$tissue[grep("Nerve", hub_net$variable)] <- "Nerve Tibial"
hub_net$tissue[grep("Thyroid", hub_net$variable)] <- "Thyroid"
hub_net$tissue[grep("Skin", hub_net$variable)] <- "Sun exposed Skin"

hub_net$version <- NA
hub_net$version[grep("raw", hub_net$variable)] <- "Uncorrected"
hub_net$version[grep("rin", hub_net$variable)] <- "RIN"
hub_net$version[grep("mc", hub_net$variable)] <- "multi-covariate"
hub_net$version[grep("..pc.", hub_net$variable)] <- "PC"


select_category <- function(category_name, pr_table){
pr_table <- pr_table[which(pr_table$version %in% category_name),]
pr_table$version <- factor(pr_table$version, levels = category_name)
pr_table
}

which_version <- c("Uncorrected", "RIN", "multi-covariate", "PC")

plot_this <- select_category(which_version, hub_net)

thisplot <- ggplot(aes(y = value, x = tissue, fill = version),
data = plot_this)+
geom_boxplot()+ ylab("# Nodes with >=20 neighbors")+ xlab("Tissue") + theme_classic()+theme(axis.text.x = element_text(angle = 90, hjust = 1))

pdf("../suppfig13.pdf", height = 7, width = 12)
print(thisplot)
dev.off()

136 changes: 136 additions & 0 deletions publication_figures/src/supp_fig14.R
Original file line number Diff line number Diff line change
@@ -0,0 +1,136 @@
library(cowplot)
library(ggplot2)
theme_set(theme_cowplot(font_size=9))
cutheights <- seq(0.9,1.0, length.out = 50)

cat.plot <- c("uncorrected", "RIN", "multi-covariate", "PC")

# select category to plot
select_category <- function(category_name, pr_table){
pr_table <- pr_table[which(pr_table$type %in% category_name),]
pr_table$type <- factor(pr_table$type, levels = category_name)
pr_table$cutheights <- rep(cutheights,length(category_name))
pr_table$fnr <- pr_table$false_negatives/ ((4978 * (4978 - 1))/2 - pr_table$density)
pr_table
}

plot.thyroid <- readRDS("/work-zfs/abattle4/parsana/networks_correction/results/PR/pr_density_wgcna-signed_canonical_thyroid.Rds")
plot.thyroid <- select_category(cat.plot, plot.thyroid)
plot.thyroid <- ggplot(plot.thyroid, aes(x = cutheights, y = fnr, colour = type)) + geom_point(size =0.3) +
xlab("cut-heights") + ylab("FNR")+ggtitle("Thyroid")
plot.lung <- readRDS("/work-zfs/abattle4/parsana/networks_correction/results/PR/pr_density_wgcna-signed_canonical_lung.Rds")
plot.lung <- select_category(cat.plot, plot.lung)
plot.lung <- ggplot(plot.lung, aes(x = cutheights, y = fnr, colour = type)) + geom_point(size = 0.3) +
xlab("cut-heights") + ylab("FNR")+ggtitle("Lung")
plot.blood <- readRDS("/work-zfs/abattle4/parsana/networks_correction/results/PR/pr_density_wgcna-signed_canonical_blood.Rds")
plot.blood <- select_category(cat.plot, plot.blood)
plot.blood <- ggplot(plot.blood, aes(x = cutheights, y = fnr, colour = type)) + geom_point(size = 0.3) +
xlab("cut-heights") + ylab("FNR")+ggtitle("Whole Blood")
plot.skin <- readRDS("/work-zfs/abattle4/parsana/networks_correction/results/PR/pr_density_wgcna-signed_canonical_skin.Rds")
plot.skin <- select_category(cat.plot, plot.skin)
plot.skin <- ggplot(plot.skin, aes(x = cutheights, y = fnr, colour = type)) + geom_point(size = 0.3) +
xlab("cut-heights") + ylab("FNR")+ggtitle("skin")
plot.muscle <- readRDS("/work-zfs/abattle4/parsana/networks_correction/results/PR/pr_density_wgcna-signed_canonical_muscle.Rds")
plot.muscle <- select_category(cat.plot, plot.muscle)
plot.muscle <- ggplot(plot.muscle, aes(x = cutheights, y = fnr, colour = type)) + geom_point(size = 0.3) +
xlab("cut-heights") + ylab("FNR")+ggtitle("muscle")
plot.subcutaneous <- readRDS("/work-zfs/abattle4/parsana/networks_correction/results/PR/pr_density_wgcna-signed_canonical_subcutaneous.Rds")
plot.subcutaneous <- select_category(cat.plot, plot.subcutaneous)
plot.subcutaneous <- ggplot(plot.subcutaneous, aes(x = cutheights, y = fnr, colour = type)) + geom_point(size = 0.3) +
xlab("cut-heights") + ylab("FNR")+ggtitle("subcutaneous")
plot.artery <- readRDS("/work-zfs/abattle4/parsana/networks_correction/results/PR/pr_density_wgcna-signed_canonical_artery.Rds")
plot.artery <- select_category(cat.plot, plot.artery)
plot.artery <- ggplot(plot.artery, aes(x = cutheights, y = fnr, colour = type)) + geom_point(size = 0.3) +
xlab("cut-heights") + ylab("FNR")+ggtitle("artery")
plot.nerve <- readRDS("/work-zfs/abattle4/parsana/networks_correction/results/PR/pr_density_wgcna-signed_canonical_nerve.Rds")
plot.nerve <- select_category(cat.plot, plot.nerve)
plot.nerve <- ggplot(plot.nerve, aes(x = cutheights, y = fnr, colour = type)) + geom_point(size = 0.3) +
xlab("cut-heights") + ylab("FNR")+ggtitle("nerve")
###############################
fig2 <- plot_grid(plot.blood + xlim(0.9,1.0) + ylim(0.045, 0.050) + theme(legend.position="none"),
plot.lung + xlim(0.9,1.0) + ylim(0.045, 0.050) + theme(legend.position="none"),
# plot.muscle + xlim(0.9,1.0) + + theme(legend.position="none"),
# plot.artery + xlim(0.9,1.0) + + theme(legend.position="none"),
# plot.skin + xlim(0.9,1.0) + + theme(legend.position="none"),
# plot.nerve + xlim(0.9,1.0) + + theme(legend.position="none"),
# plot.subcutaneous + xlim(0.9,1.0) + + theme(legend.position="none"),
plot.thyroid + xlim(0.9,1.0) + ylim(0.045, 0.050) + theme(legend.position="none"),
align = 'vh',
labels = c("a", "b", "c"),
hjust = -1,
nrow = 1
)
legend <- get_legend(plot.lung +
theme(legend.key = element_rect(color = "black", linetype = "solid", size = 0.5),
legend.key.size = unit(0.3, "cm"), legend.key.height=unit(1.5,"line")) +
guides(colour = guide_legend(override.aes = list(size= 1))))
fig2a <- plot_grid( fig2, legend, rel_widths = c(3, .4))


####################################### Fig 2b glasso ###################################
lambda <- seq(0.3,1.0, length.out = 50)
cat.plot <- c("uncorrected", "RIN", "multi-covariate", "PC")
# select category to plot
select_category <- function(category_name, pr_table){
pr_table <- pr_table[which(pr_table$type %in% category_name),]
pr_table$type <- factor(pr_table$type, levels = category_name)
pr_table$lambda <- rep(lambda,length(category_name))
pr_table$fnr <- pr_table$false_negatives/ ((4978 * (4978 - 1))/2 - pr_table$density)
pr_table
}
plot.thyroid <- readRDS("/work-zfs/abattle4/parsana/networks_correction/results/PR/pr_density_glasso_canonical_thyroid.Rds")
plot.thyroid <- select_category(cat.plot, plot.thyroid)
plot.thyroid <- ggplot(plot.thyroid, aes(x = lambda, y = fnr, colour = type)) + geom_point(size =0.3) +
xlab("lambda") + ylab("FNR")+ggtitle("Thyroid")
plot.lung <- readRDS("/work-zfs/abattle4/parsana/networks_correction/results/PR/pr_density_glasso_canonical_lung.Rds")
plot.lung <- select_category(cat.plot, plot.lung)
plot.lung <- ggplot(plot.lung, aes(x = lambda, y = fnr, colour = type)) + geom_point(size = 0.3) +
xlab("lambda") + ylab("FNR")+ggtitle("Lung")
plot.blood <- readRDS("/work-zfs/abattle4/parsana/networks_correction/results/PR/pr_density_glasso_canonical_blood.Rds")
plot.blood <- select_category(cat.plot, plot.blood)
plot.blood <- ggplot(plot.blood, aes(x = lambda, y = fnr, colour = type)) + geom_point(size = 0.3) +
xlab("lambda") + ylab("FNR")+ggtitle("Whole Blood")
plot.skin <- readRDS("/work-zfs/abattle4/parsana/networks_correction/results/PR/pr_density_glasso_canonical_skin.Rds")
plot.skin <- select_category(cat.plot, plot.skin)
plot.skin <- ggplot(plot.skin, aes(x = lambda, y = fnr, colour = type)) + geom_point(size = 0.3) +
xlab("lambda") + ylab("FNR")+ggtitle("skin")
plot.muscle <- readRDS("/work-zfs/abattle4/parsana/networks_correction/results/PR/pr_density_glasso_canonical_muscle.Rds")
plot.muscle <- select_category(cat.plot, plot.muscle)
plot.muscle <- ggplot(plot.muscle, aes(x = lambda, y = fnr, colour = type)) + geom_point(size = 0.3) +
xlab("lambda") + ylab("FNR")+ggtitle("muscle")
plot.subcutaneous <- readRDS("/work-zfs/abattle4/parsana/networks_correction/results/PR/pr_density_glasso_canonical_subcutaneous.Rds")
plot.subcutaneous <- select_category(cat.plot, plot.subcutaneous)
plot.subcutaneous <- ggplot(plot.subcutaneous, aes(x = lambda, y = fnr, colour = type)) + geom_point(size = 0.3) +
xlab("lambda") + ylab("FNR")+ggtitle("subcutaneous")
plot.artery <- readRDS("/work-zfs/abattle4/parsana/networks_correction/results/PR/pr_density_glasso_canonical_artery.Rds")
plot.artery <- select_category(cat.plot, plot.artery)
plot.artery <- ggplot(plot.artery, aes(x = lambda, y = fnr, colour = type)) + geom_point(size = 0.3) +
xlab("lambda") + ylab("FNR")+ggtitle("artery")
plot.nerve <- readRDS("/work-zfs/abattle4/parsana/networks_correction/results/PR/pr_density_glasso_canonical_nerve.Rds")
plot.nerve <- select_category(cat.plot, plot.nerve)
plot.nerve <- ggplot(plot.nerve, aes(x = lambda, y = fnr, colour = type)) + geom_point(size = 0.3) +
xlab("lambda") + ylab("FNR")+ggtitle("nerve")
###############################
fig3 <- plot_grid(plot.blood + xlim(0.3,1.0) + ylim(0.045, 0.050)+ theme(legend.position="none"),
plot.lung + xlim(0.3,1.0) + ylim(0.045, 0.050)+ theme(legend.position="none"),
# plot.muscle + xlim(0.3,1.0) + theme(legend.position="none"),
# plot.artery + xlim(0.3,1.0) + theme(legend.position="none"),
# plot.skin + xlim(0.3,1.0) + theme(legend.position="none"),
# plot.nerve + xlim(0.3,1.0) + theme(legend.position="none"),
# plot.subcutaneous + xlim(0.3,1.0) + theme(legend.position="none"),
plot.thyroid + xlim(0.3,1.0) + ylim(0.045, 0.050) + theme(legend.position="none"),
align = 'vh',
labels = c("a", "b", "c"),
hjust = -1,
nrow = 1
)

legend <- get_legend(plot.lung +
theme(legend.key = element_rect(color = "black", linetype = "solid", size = 0.5),
legend.key.size = unit(0.3, "cm"), legend.key.height=unit(1.5,"line")) +
guides(colour = guide_legend(override.aes = list(size= 1))))
fig2b <- plot_grid( fig3, legend, rel_widths = c(3, .4))

pdf("../suppfig14.pdf", height = 5, width = 7.2)
plot_grid(fig2a, fig2b, nrow = 2)
dev.off()
Loading

0 comments on commit 6ca7d93

Please sign in to comment.