-
Notifications
You must be signed in to change notification settings - Fork 32
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
started working on a file combining all four variants of revDeriv
- Loading branch information
Showing
1 changed file
with
224 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,224 @@ | ||
import SciLean.Core.FunctionPropositions.HasAdjDiffAt | ||
import SciLean.Core.FunctionPropositions.HasAdjDiff | ||
|
||
import SciLean.Core.FunctionTransformations.SemiAdjoint | ||
|
||
import SciLean.Data.StructLike | ||
|
||
import SciLean.Data.Curry | ||
|
||
set_option linter.unusedVariables false | ||
|
||
namespace SciLean | ||
|
||
variable | ||
(K : Type _) [IsROrC K] | ||
{X : Type _} [SemiInnerProductSpace K X] | ||
{Y : Type _} [SemiInnerProductSpace K Y] | ||
{Z : Type _} [SemiInnerProductSpace K Z] | ||
{W : Type _} [SemiInnerProductSpace K W] | ||
{ι : Type _} [EnumType ι] | ||
{κ : Type _} [EnumType κ] | ||
{E I : Type _} {EI : I → Type _} | ||
[StructLike E I EI] [EnumType I] | ||
[SemiInnerProductSpace K E] [∀ i, SemiInnerProductSpace K (EI i)] | ||
[SemiInnerProductSpaceStruct K E I EI] | ||
{F J : Type _} {FJ : J → Type _} | ||
[StructLike F J FJ] [EnumType J] | ||
[SemiInnerProductSpace K F] [∀ j, SemiInnerProductSpace K (FJ j)] | ||
[SemiInnerProductSpaceStruct K F J FJ] | ||
|
||
|
||
noncomputable | ||
def revDeriv | ||
(f : X → Y) (x : X) : Y×(Y→X) := | ||
(f x, semiAdjoint K (cderiv K f x)) | ||
|
||
|
||
noncomputable | ||
def revDerivUpdate | ||
(f : X → Y) (x : X) : Y×(Y→X→X) := | ||
let ydf := revDeriv K f x | ||
(ydf.1, fun dy dx => dx + ydf.2 dy) | ||
|
||
noncomputable | ||
def revDerivProj | ||
(f : X → E) (x : X) : E×((i : I)→EI i→X) := | ||
let ydf' := revDeriv K f x | ||
(ydf'.1, fun i de => | ||
have := Classical.propDecidable | ||
ydf'.2 (StructLike.make fun i' => if h:i=i' then h▸de else 0)) | ||
|
||
noncomputable | ||
def revDerivProjUpdate | ||
(f : X → E) (x : X) : E×((i : I)→EI i→X→X) := | ||
let ydf' := revDerivProj K f x | ||
(ydf'.1, fun i de dx => dx + ydf'.2 i de) | ||
|
||
|
||
-------------------------------------------------------------------------------- | ||
-- simplification rules for individual components ------------------------------ | ||
-------------------------------------------------------------------------------- | ||
|
||
@[simp, ftrans_simp] | ||
theorem revDeriv_fst (f : X → Y) (x : X) | ||
: (revDeriv K f x).1 = f x := | ||
by | ||
rfl | ||
|
||
@[simp, ftrans_simp] | ||
theorem revDeriv_snd_zero (f : X → Y) (x : X) | ||
: (revDeriv K f x).2 0 = 0 := | ||
by | ||
simp[revDeriv] | ||
|
||
@[simp, ftrans_simp] | ||
theorem revDerivUpdate_fst (f : X → Y) (x : X) | ||
: (revDerivUpdate K f x).1 = f x := | ||
by | ||
rfl | ||
|
||
@[simp, ftrans_simp] | ||
theorem revDerivUpdate_snd_zero (f : X → Y) (x dx : X) | ||
: (revDerivUpdate K f x).2 0 dx = dx := | ||
by | ||
simp[revDerivUpdate] | ||
|
||
@[simp, ftrans_simp] | ||
theorem revDerivUpdate_snd_zero' (f : X → Y) (x : X) (dy : Y) | ||
: (revDerivUpdate K f x).2 dy 0 = (revDeriv K f x).2 dy := | ||
by | ||
simp[revDerivUpdate] | ||
|
||
|
||
@[simp, ftrans_simp] | ||
theorem revDerivProj_fst (f : X → E) (x : X) | ||
: (revDerivProj K f x).1 = f x := | ||
by | ||
rfl | ||
|
||
@[simp, ftrans_simp] | ||
theorem revDerivProj_snd_zero (f : X → E) (x : X) (i : I) | ||
: (revDerivProj K f x).2 i 0 = 0 := | ||
by | ||
simp[revDerivProj] | ||
conv in (StructLike.make _) => | ||
equals (0:E) => | ||
apply StructLike.ext | ||
intro i'; simp | ||
if h : i=i' then subst h; simp else simp[h] | ||
simp | ||
|
||
@[simp, ftrans_simp] | ||
theorem revDerivProjUpdate_fst (f : X → E) (x : X) | ||
: (revDerivProjUpdate K f x).1 = f x := | ||
by | ||
rfl | ||
|
||
@[simp, ftrans_simp] | ||
theorem revDerivProjUpdate_snd_zero (f : X → E) (x dx : X) (i : I) | ||
: (revDerivProjUpdate K f x).2 i 0 dx = dx := | ||
by | ||
simp[revDerivProjUpdate] | ||
|
||
@[simp, ftrans_simp] | ||
theorem revDerivProjUpdate_snd_zero' (f : X → Y) (x : X) (dy : Y) | ||
: (revDerivUpdate K f x).2 dy 0 = (revDeriv K f x).2 dy := | ||
by | ||
simp[revDerivUpdate] | ||
|
||
|
||
-------------------------------------------------------------------------------- | ||
-- Lambda calculus rules for revDeriv ------------------------------------------ | ||
-------------------------------------------------------------------------------- | ||
|
||
namespace revDeriv | ||
|
||
variable (X) | ||
theorem id_rule | ||
: revDeriv K (fun x : X => x) = fun x => (x, fun dx => dx) := | ||
by | ||
unfold revDeriv | ||
funext _; ftrans; ftrans | ||
|
||
|
||
theorem const_rule (y : Y) | ||
: revDeriv K (fun _ : X => y) = fun x => (y, fun _ => 0) := | ||
by | ||
unfold revDeriv | ||
funext _; ftrans; ftrans | ||
variable{X} | ||
|
||
variable(E) | ||
theorem proj_rule (i : I) | ||
: revDeriv K (fun (x : (i:I) → EI i) => x i) | ||
= | ||
fun x => | ||
(x i, fun dxi j => if h : i=j then h ▸ dxi else 0) := | ||
by | ||
unfold revDeriv | ||
funext _; ftrans; ftrans | ||
variable {E} | ||
|
||
|
||
theorem comp_rule | ||
(f : Y → Z) (g : X → Y) | ||
(hf : HasAdjDiff K f) (hg : HasAdjDiff K g) | ||
: revDeriv K (fun x : X => f (g x)) | ||
= | ||
fun x => | ||
let ydg := revDeriv K g x | ||
let zdf := revDeriv K f ydg.1 | ||
(zdf.1, | ||
fun dz => | ||
let dy := zdf.2 dz | ||
ydg.2 dy) := | ||
by | ||
have ⟨_,_⟩ := hf | ||
have ⟨_,_⟩ := hg | ||
unfold revDeriv | ||
funext _; ftrans; ftrans | ||
rfl | ||
|
||
theorem let_rule | ||
(f : X → Y → Z) (g : X → Y) | ||
(hf : HasAdjDiff K (fun (xy : X×Y) => f xy.1 xy.2)) (hg : HasAdjDiff K g) | ||
: revDeriv K (fun x : X => let y := g x; f x y) | ||
= | ||
fun x => | ||
let ydg := revDerivUpdate K g x | ||
let zdf := revDeriv K (fun (xy : X×Y) => f xy.1 xy.2) (x,ydg.1) | ||
(zdf.1, | ||
fun dz => | ||
let dxdy := zdf.2 dz | ||
let dx := ydg.2 dxdy.2 dxdy.1 | ||
dx) := | ||
by | ||
have ⟨_,_⟩ := hf | ||
have ⟨_,_⟩ := hg | ||
unfold revDeriv | ||
funext _; ftrans; ftrans; rfl | ||
|
||
theorem pi_rule | ||
(f : X → (i : I) → EI i) (hf : ∀ i, HasAdjDiff K (f · i)) | ||
: (revDeriv K fun (x : X) (i : I) => f x i) | ||
= | ||
fun x => | ||
let xdf := revDerivProjUpdate K f x | ||
(fun i => xdf.1 i, | ||
fun dy => Id.run do | ||
let mut dx : X := 0 | ||
for i in fullRange I do | ||
dx := xdf.2 ⟨i,()⟩ (dy i) dx | ||
dx) := | ||
by | ||
have _ := fun i => (hf i).1 | ||
have _ := fun i => (hf i).2 | ||
unfold revDeriv | ||
funext _; ftrans; ftrans | ||
|
||
end revDeriv | ||
|
||
-------------------------------------------------------------------------------- | ||
-- Lambda calculus rules for revDerivUpdate ------------------------------------ | ||
-------------------------------------------------------------------------------- |