Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Merged by Bors] - feat(RingTheory/Polynomial/HilbertPoly): the definition and key property of Polynomial.hilbertPoly p d for p : F[X] and d : ℕ, where F is a field. #19303

Closed
wants to merge 18 commits into from
Closed
1 change: 1 addition & 0 deletions Mathlib.lean
Original file line number Diff line number Diff line change
Expand Up @@ -4387,6 +4387,7 @@ import Mathlib.RingTheory.Polynomial.Eisenstein.IsIntegral
import Mathlib.RingTheory.Polynomial.GaussLemma
import Mathlib.RingTheory.Polynomial.Hermite.Basic
import Mathlib.RingTheory.Polynomial.Hermite.Gaussian
import Mathlib.RingTheory.Polynomial.Hilbert
import Mathlib.RingTheory.Polynomial.IntegralNormalization
import Mathlib.RingTheory.Polynomial.IrreducibleRing
import Mathlib.RingTheory.Polynomial.Nilpotent
Expand Down
4 changes: 4 additions & 0 deletions Mathlib/Data/Nat/Factorial/BigOperators.lean
Original file line number Diff line number Diff line change
Expand Up @@ -33,6 +33,10 @@ theorem prod_factorial_dvd_factorial_sum : (∏ i ∈ s, (f i)!) ∣ (∑ i ∈
· rw [prod_cons, Finset.sum_cons]
exact (mul_dvd_mul_left _ ih).trans (Nat.factorial_mul_factorial_dvd_factorial_add _ _)

theorem ascFactorial_eq_prod_range (n : ℕ) : ∀ k, n.ascFactorial k = ∏ i ∈ range k, (n + i)
| 0 => rfl
| k + 1 => by rw [ascFactorial, prod_range_succ, mul_comm, ascFactorial_eq_prod_range n k]

theorem descFactorial_eq_prod_range (n : ℕ) : ∀ k, n.descFactorial k = ∏ i ∈ range k, (n - i)
| 0 => rfl
| k + 1 => by rw [descFactorial, prod_range_succ, mul_comm, descFactorial_eq_prod_range n k]
Expand Down
105 changes: 105 additions & 0 deletions Mathlib/RingTheory/Polynomial/Hilbert.lean
Original file line number Diff line number Diff line change
@@ -0,0 +1,105 @@
/-
Copyright (c) 2024 Fangming Li. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Fangming Li, Jujian Zhang
-/
import Mathlib.Algebra.Polynomial.AlgebraMap
import Mathlib.Algebra.Polynomial.Eval.SMul
import Mathlib.RingTheory.Polynomial.Pochhammer
import Mathlib.RingTheory.PowerSeries.WellKnown
import Mathlib.Tactic.FieldSimp

/-!
# Hilbert polynomials

In this file, we formalise the following statement: if `F` is a field with characteristic `0`, then
given any `p : F[X]` and `d : ℕ`, there exists some `h : F[X]` such that for any large enough
`n : ℕ`, `h(n)` is equal to the coefficient of `Xⁿ` in the power series expansion of `p/(1 - X)ᵈ`.
This `h` is unique and is denoted as `Polynomial.hilbert p d`.
FMLJohn marked this conversation as resolved.
Show resolved Hide resolved

## Main definitions

* `Polynomial.hilbert p d`. Given a field `F`, a polynomial `p : F[X]` and a natural number `d`, if
kbuzzard marked this conversation as resolved.
Show resolved Hide resolved
`F` is of characteristic `0`, then `Polynomial.hilbert p d : F[X]` is the polynomial whose value
at `n` equals the coefficient of `Xⁿ` in the power series expansion of `p/(1 - X)ᵈ`.

## TODO

* Hilbert polynomials of finitely generated graded modules over Noetherian rings.
-/

open Nat PowerSeries

variable (F : Type*) [Field F]

namespace Polynomial

/--
For any field `F` and natrual numbers `d` and `k`, `Polynomial.preHilbert F d k` is defined as
FMLJohn marked this conversation as resolved.
Show resolved Hide resolved
`(d.factorial : F)⁻¹ • ((ascPochhammer F d).comp (X - (C (k : F)) + 1))`. This is the most basic
form of Hilbert polynomials. `Polynomial.preHilbert ℚ d 0` is exactly the Hilbert polynomial of
the polynomial ring `ℚ[X_0,...,X_d]` viewed as a graded module over itself. See also the theorem
FMLJohn marked this conversation as resolved.
Show resolved Hide resolved
`Polynomial.preHilbert_eq_choose_sub_add`, which states that if `CharZero F`, then for any
`d k n : ℕ` with `k ≤ n`, `(Polynomial.preHilbert F d k).eval (n : F) = (n - k + d).choose d`.
-/
noncomputable def preHilbert (d k : ℕ) : F[X] :=
(d.factorial : F)⁻¹ • ((ascPochhammer F d).comp (X - (C (k : F)) + 1))

theorem preHilbert_eq_choose_sub_add [CharZero F] (d k n : ℕ) (hkn : k ≤ n):
FMLJohn marked this conversation as resolved.
Show resolved Hide resolved
(preHilbert F d k).eval (n : F) = (n - k + d).choose d := by
have : ((d ! : ℕ) : F) ≠ 0 := by norm_cast; positivity
calc
_ = (↑d !)⁻¹ * eval (↑(n - k + 1)) (ascPochhammer F d) := by simp [cast_sub hkn, preHilbert]
_ = (n - k + d).choose d := by
rw [ascPochhammer_nat_eq_natCast_ascFactorial];
field_simp [ascFactorial_eq_factorial_mul_choose]

variable {F}

/--
`Polynomial.hilbert p 0 = 0`; for any `d : ℕ`, `Polynomial.hilbert p (d + 1)` is
defined as `∑ i in p.support, (p.coeff i) • Polynomial.preHilbert F d i`. If `M` is
a graded module whose Poincaré series can be written as `p(X)/(1 - X)ᵈ` for some
`p : ℚ[X]` with integer coefficients, then `Polynomial.hilbert p d` is the Hilbert
polynomial of `M`. See also `Polynomial.coeff_mul_invOneSubPow_eq_hilbert_eval`,
which says that `PowerSeries.coeff F n (p * (PowerSeries.invOneSubPow F d))` is
equal to `(Polynomial.hilbert p d).eval (n : F)` for any large enough `n : ℕ`.
-/
noncomputable def hilbert (p : F[X]) : (d : ℕ) → F[X]
| 0 => 0
| d + 1 => ∑ i in p.support, (p.coeff i) • preHilbert F d i

variable (F) in
lemma hilbert_zero (d : ℕ) : hilbert (0 : F[X]) d = 0 := by
delta hilbert; induction d with
| zero => simp only
| succ d _ => simp only [coeff_zero, zero_smul, Finset.sum_const_zero]

/--
The key property of Hilbert polynomials. If `F` is a field with characteristic `0`, `p : F[X]` and
`d : ℕ`, then for any large enough `n : ℕ`, `(Polynomial.hilbert p d).eval (n : F)` is equal to the
coefficient of `Xⁿ` in the power series expansion of `p/(1 - X)ᵈ`.
-/
theorem coeff_mul_invOneSubPow_eq_hilbert_eval
[CharZero F] (p : F[X]) (d n : ℕ) (hn : p.natDegree < n) :
PowerSeries.coeff F n (p * (invOneSubPow F d)) = (hilbert p d).eval (n : F) := by
delta hilbert; induction d with
| zero => simp only [invOneSubPow_zero, Units.val_one, mul_one, coeff_coe, eval_zero]
exact coeff_eq_zero_of_natDegree_lt hn
| succ d hd =>
simp only [eval_finset_sum, eval_smul, smul_eq_mul]; rw [← Finset.sum_coe_sort]
simp_rw [show (i : p.support) → eval ↑n (preHilbert F d ↑i) = (n + d - ↑i).choose d by
intro i; rw [preHilbert_eq_choose_sub_add _ _ _ _ <| le_trans (le_natDegree_of_ne_zero
<| mem_support_iff.1 i.2) (le_of_lt hn)]; rw [Nat.sub_add_comm];
exact le_trans (le_natDegree_of_ne_zero <| mem_support_iff.1 i.2) (le_of_lt hn)]
rw [Finset.sum_coe_sort _ (fun x => (p.coeff ↑x) * (_ + d - ↑x).choose _),
PowerSeries.coeff_mul, Finset.Nat.sum_antidiagonal_eq_sum_range_succ_mk,
invOneSubPow_val_eq_mk_sub_one_add_choose_of_pos _ _ (zero_lt_succ d)]
simp only [coeff_coe, coeff_mk]
exact Eq.symm <| Finset.sum_subset_zero_on_sdiff (fun s hs => Finset.mem_range_succ_iff.mpr
<| le_trans (le_natDegree_of_ne_zero <| mem_support_iff.1 hs) (le_of_lt hn)) (fun x hx => by
simp only [Finset.mem_sdiff, mem_support_iff, not_not] at hx; rw [hx.2, zero_mul])
(fun x hx => by rw [add_comm, Nat.add_sub_assoc <| le_trans (le_natDegree_of_ne_zero <|
mem_support_iff.1 hx) (le_of_lt hn), succ_eq_add_one, add_tsub_cancel_right])
FMLJohn marked this conversation as resolved.
Show resolved Hide resolved

end Polynomial
10 changes: 10 additions & 0 deletions Mathlib/RingTheory/Polynomial/Pochhammer.lean
Original file line number Diff line number Diff line change
Expand Up @@ -155,10 +155,20 @@ theorem ascPochhammer_nat_eq_ascFactorial (n : ℕ) :
rw [ascPochhammer_succ_right, eval_mul, ascPochhammer_nat_eq_ascFactorial n t, eval_add, eval_X,
eval_natCast, Nat.cast_id, Nat.ascFactorial_succ, mul_comm]

theorem ascPochhammer_nat_eq_natCast_ascFactorial (S : Type*) [Semiring S] (n k : ℕ) :
(ascPochhammer S k).eval (n : S) = n.ascFactorial k := by
norm_cast
rw [ascPochhammer_nat_eq_ascFactorial]

theorem ascPochhammer_nat_eq_descFactorial (a b : ℕ) :
(ascPochhammer ℕ b).eval a = (a + b - 1).descFactorial b := by
rw [ascPochhammer_nat_eq_ascFactorial, Nat.add_descFactorial_eq_ascFactorial']

theorem ascPochhammer_nat_eq_natCast_descFactorial (S : Type*) [Semiring S] (a b : ℕ) :
(ascPochhammer S b).eval (a : S) = (a + b - 1).descFactorial b := by
norm_cast
rw [ascPochhammer_nat_eq_descFactorial]

@[simp]
theorem ascPochhammer_natDegree (n : ℕ) [NoZeroDivisors S] [Nontrivial S] :
(ascPochhammer S n).natDegree = n := by
Expand Down
5 changes: 2 additions & 3 deletions Mathlib/RingTheory/PowerSeries/WellKnown.lean
Original file line number Diff line number Diff line change
Expand Up @@ -152,10 +152,9 @@ theorem invOneSubPow_inv_eq_one_sub_pow :
| zero => exact Eq.symm <| pow_zero _
| succ d => rfl

theorem invOneSubPow_inv_eq_one_of_eq_zero (h : d = 0) :
(invOneSubPow S d).inv = 1 := by
theorem invOneSubPow_inv_zero_eq_one : (invOneSubPow S 0).inv = 1 := by
delta invOneSubPow
simp only [h, Units.inv_eq_val_inv, inv_one, Units.val_one]
simp only [Units.inv_eq_val_inv, inv_one, Units.val_one]
erdOne marked this conversation as resolved.
Show resolved Hide resolved

theorem mk_add_choose_mul_one_sub_pow_eq_one :
(mk fun n ↦ Nat.choose (d + n) d : S⟦X⟧) * ((1 - X) ^ (d + 1)) = 1 :=
Expand Down
7 changes: 4 additions & 3 deletions scripts/noshake.json
Original file line number Diff line number Diff line change
Expand Up @@ -317,14 +317,15 @@
"Mathlib.RingTheory.PowerSeries.Basic":
["Mathlib.Algebra.CharP.Defs", "Mathlib.Tactic.MoveAdd"],
"Mathlib.RingTheory.PolynomialAlgebra": ["Mathlib.Data.Matrix.DMatrix"],
"Mathlib.RingTheory.Polynomial.Hilbert":
["Mathlib.RingTheory.PowerSeries.WellKnown"],
kbuzzard marked this conversation as resolved.
Show resolved Hide resolved
"Mathlib.RingTheory.MvPolynomial.Homogeneous":
["Mathlib.Algebra.DirectSum.Internal"],
"Mathlib.RingTheory.KrullDimension.Basic":
["Mathlib.Algebra.MvPolynomial.CommRing", "Mathlib.Algebra.Polynomial.Basic"],
"Mathlib.RingTheory.IntegralClosure.IsIntegral.Defs":
["Mathlib.Tactic.Algebraize"],
"Mathlib.RingTheory.Finiteness.Defs":
["Mathlib.Tactic.Algebraize"],
"Mathlib.RingTheory.Finiteness.Defs": ["Mathlib.Tactic.Algebraize"],
"Mathlib.RingTheory.Binomial": ["Mathlib.Algebra.Order.Floor"],
"Mathlib.RingTheory.Adjoin.Basic": ["Mathlib.LinearAlgebra.Finsupp.SumProd"],
"Mathlib.RepresentationTheory.FdRep":
Expand Down Expand Up @@ -365,7 +366,6 @@
"Mathlib.Deprecated.NatLemmas": ["Batteries.Data.Nat.Lemmas", "Batteries.WF"],
"Mathlib.Deprecated.MinMax": ["Mathlib.Order.MinMax"],
"Mathlib.Deprecated.ByteArray": ["Batteries.Data.ByteSubarray"],
"Mathlib.Data.ENat.Lattice": ["Mathlib.Algebra.Group.Action.Defs"],
"Mathlib.Data.Vector.Basic": ["Mathlib.Control.Applicative"],
"Mathlib.Data.Set.Image":
["Batteries.Tactic.Congr", "Mathlib.Data.Set.SymmDiff"],
Expand All @@ -387,6 +387,7 @@
"Mathlib.Data.Int.Defs": ["Batteries.Data.Int.Order"],
"Mathlib.Data.FunLike.Basic": ["Mathlib.Logic.Function.Basic"],
"Mathlib.Data.Finset.Insert": ["Mathlib.Data.Finset.Attr"],
"Mathlib.Data.ENat.Lattice": ["Mathlib.Algebra.Group.Action.Defs"],
"Mathlib.Data.ByteArray": ["Batteries.Data.ByteSubarray"],
"Mathlib.Data.Bool.Basic": ["Batteries.Tactic.Init"],
"Mathlib.Control.Traversable.Instances": ["Mathlib.Control.Applicative"],
Expand Down