Skip to content

Commit

Permalink
chore: turn erw into rw for free (#19689)
Browse files Browse the repository at this point in the history
The `erw` linter from #17638 caught these `erw`s that can become `rw` without breaking the proofs.
  • Loading branch information
Vierkantor committed Dec 2, 2024
1 parent ceca167 commit de7196a
Show file tree
Hide file tree
Showing 2 changed files with 3 additions and 3 deletions.
2 changes: 1 addition & 1 deletion Mathlib/AlgebraicGeometry/AffineSpace.lean
Original file line number Diff line number Diff line change
Expand Up @@ -297,7 +297,7 @@ lemma map_comp {S S' S'' : Scheme} (f : S ⟶ S') (g : S' ⟶ S'') :
· simp
· simp only [TopologicalSpace.Opens.map_top, Scheme.comp_coeBase,
TopologicalSpace.Opens.map_comp_obj, Scheme.comp_app, CommRingCat.comp_apply]
erw [map_appTop_coord, map_appTop_coord, map_appTop_coord]
rw [map_appTop_coord, map_appTop_coord, map_appTop_coord]

lemma map_Spec_map {R S : CommRingCat.{max u v}} (φ : R ⟶ S) :
map n (Spec.map φ) =
Expand Down
4 changes: 2 additions & 2 deletions Mathlib/Combinatorics/Enumerative/IncidenceAlgebra.lean
Original file line number Diff line number Diff line change
Expand Up @@ -554,8 +554,8 @@ lemma moebius_inversion_top (f g : α → 𝕜) (h : ∀ x, g x = ∑ y ∈ Ici
rw [zeta_apply, if_pos (mem_Ici.mp ‹_›), one_mul]
_ = ∑ y ∈ Ici x, ∑ z ∈ Ici y, mu 𝕜 x y * zeta 𝕜 y z * f z := by simp [mul_sum]
_ = ∑ z ∈ Ici x, ∑ y ∈ Icc x z, mu 𝕜 x y * zeta 𝕜 y z * f z := by
erw [sum_sigma' (Ici x) fun y ↦ Ici y]
erw [sum_sigma' (Ici x) fun z ↦ Icc x z]
rw [sum_sigma' (Ici x) fun y ↦ Ici y]
rw [sum_sigma' (Ici x) fun z ↦ Icc x z]
simp only [mul_boole, MulZeroClass.zero_mul, ite_mul, zeta_apply]
apply sum_nbij' (fun ⟨a, b⟩ ↦ ⟨b, a⟩) (fun ⟨a, b⟩ ↦ ⟨b, a⟩) <;>
aesop (add simp mul_assoc) (add unsafe le_trans)
Expand Down

0 comments on commit de7196a

Please sign in to comment.