Skip to content

Commit

Permalink
chore(Algebra.Order.Star.Basic): Protected `IsSelfAdjoint.mul_self_no…
Browse files Browse the repository at this point in the history
…nneg` and `IsSelfAdjoint.sq_nonneg` (#19128)

Marking these lemmas as `protected`.
  • Loading branch information
JonBannon committed Nov 16, 2024
1 parent b4ef117 commit 7b8edbb
Show file tree
Hide file tree
Showing 2 changed files with 4 additions and 4 deletions.
4 changes: 2 additions & 2 deletions Mathlib/Algebra/Order/Star/Basic.lean
Original file line number Diff line number Diff line change
Expand Up @@ -169,7 +169,7 @@ theorem mul_star_self_nonneg (r : R) : 0 ≤ r * star r := by
simpa only [star_star] using star_mul_self_nonneg (star r)

@[aesop safe apply (rule_sets := [CStarAlgebra])]
theorem IsSelfAdjoint.mul_self_nonneg {a : R} (ha : IsSelfAdjoint a) : 0 ≤ a * a := by
protected theorem IsSelfAdjoint.mul_self_nonneg {a : R} (ha : IsSelfAdjoint a) : 0 ≤ a * a := by
simpa [ha.star_eq] using star_mul_self_nonneg a

@[aesop safe apply]
Expand Down Expand Up @@ -302,7 +302,7 @@ lemma star_lt_one_iff {x : R} : star x < 1 ↔ x < 1 := by
simpa using star_lt_star_iff (x := x) (y := 1)

@[aesop safe apply (rule_sets := [CStarAlgebra])]
theorem IsSelfAdjoint.sq_nonneg {a : R} (ha : IsSelfAdjoint a) : 0 ≤ a ^ 2 := by
protected theorem IsSelfAdjoint.sq_nonneg {a : R} (ha : IsSelfAdjoint a) : 0 ≤ a ^ 2 := by
simp [sq, ha.mul_self_nonneg]

end Semiring
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -409,11 +409,11 @@ lemma SpectrumRestricts.nnreal_add {a b : A} (ha₁ : IsSelfAdjoint a)
gcongr
all_goals rw [← SpectrumRestricts.nnreal_iff_nnnorm] <;> first | rfl | assumption

protected lemma IsSelfAdjoint.sq_spectrumRestricts {a : A} (ha : IsSelfAdjoint a) :
lemma IsSelfAdjoint.sq_spectrumRestricts {a : A} (ha : IsSelfAdjoint a) :
SpectrumRestricts (a ^ 2) ContinuousMap.realToNNReal := by
rw [SpectrumRestricts.nnreal_iff, ← cfc_id (R := ℝ) a, ← cfc_pow .., cfc_map_spectrum ..]
rintro - ⟨x, -, rfl⟩
exact _root_.sq_nonneg (id x)
exact sq_nonneg x

open ComplexStarModule

Expand Down

0 comments on commit 7b8edbb

Please sign in to comment.