Skip to content
This repository has been archived by the owner on Jul 24, 2024. It is now read-only.

feat(set_theory/game/pgame): define pgame.identical pgame.memₗ pgame.memᵣ #18515

Closed
wants to merge 22 commits into from
Closed
Show file tree
Hide file tree
Changes from 18 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
140 changes: 137 additions & 3 deletions src/set_theory/game/basic.lean
Original file line number Diff line number Diff line change
@@ -1,7 +1,7 @@
/-
Copyright (c) 2019 Mario Carneiro. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Reid Barton, Mario Carneiro, Isabel Longbottom, Scott Morrison, Apurva Nakade
Authors: Reid Barton, Mario Carneiro, Isabel Longbottom, Scott Morrison, Apurva Nakade, Yuyang Zhao
-/
import set_theory.game.pgame
import tactic.abel
Expand Down Expand Up @@ -146,7 +146,7 @@ but to prove their properties we need to use the abelian group structure of game
Hence we define them here. -/

/-- The product of `x = {xL | xR}` and `y = {yL | yR}` is
`{xL*y + x*yL - xL*yL, xR*y + x*yR - xR*yR | xL*y + x*yR - xL*yR, x*yL + xR*y - xR*yL }`. -/
`{xL*y + x*yL - xL*yL, xR*y + x*yR - xR*yR | xL*y + x*yR - xL*yR, xR*y + x*yL - xR*yL}`. -/
vihdzp marked this conversation as resolved.
Show resolved Hide resolved
instance : has_mul pgame.{u} :=
⟨λ x y, begin
induction x with xl xr xL xR IHxl IHxr generalizing y,
Expand Down Expand Up @@ -263,6 +263,57 @@ begin
{ apply hr }
end

lemma exists_left_moves_mul {x y : pgame.{u}} {p : (x * y).left_moves → Prop} :
FR-vdash-bot marked this conversation as resolved.
Show resolved Hide resolved
(∃ i, p i) ↔
(∃ i j, p (to_left_moves_mul (sum.inl (i, j)))) ∨
(∃ i j, p (to_left_moves_mul (sum.inr (i, j)))) :=
begin
cases x with xl xr xL xR; cases y with yl yr yL yR,
constructor,
{ rintros ⟨(⟨i, j⟩ | ⟨i, j⟩), hi⟩, exacts [or.inl ⟨i, j, hi⟩, or.inr ⟨i, j, hi⟩], },
{ rintros (⟨i, j, h⟩ | ⟨i, j, h⟩), exacts [⟨_, h⟩, ⟨_, h⟩], },
end

lemma exists_right_moves_mul {x y : pgame.{u}} {p : (x * y).right_moves → Prop} :
(∃ i, p i) ↔
(∃ i j, p (to_right_moves_mul (sum.inl (i, j)))) ∨
(∃ i j, p (to_right_moves_mul (sum.inr (i, j)))) :=
begin
cases x with xl xr xL xR; cases y with yl yr yL yR,
constructor,
{ rintros ⟨(⟨i, j⟩ | ⟨i, j⟩), hi⟩, exacts [or.inl ⟨i, j, hi⟩, or.inr ⟨i, j, hi⟩], },
{ rintros (⟨i, j, h⟩ | ⟨i, j, h⟩), exacts [⟨_, h⟩, ⟨_, h⟩], },
end

lemma memₗ_mul_iff : Π {x y₁ y₂ : pgame},
x ∈ₗ y₁ * y₂ ↔
(∃ i j, x ≡ y₁.move_left i * y₂ + y₁ * y₂.move_left j - y₁.move_left i * y₂.move_left j) ∨
(∃ i j, x ≡ y₁.move_right i * y₂ + y₁ * y₂.move_right j - y₁.move_right i * y₂.move_right j)
| (mk xl xr xL xR) (mk y₁l y₁r y₁L y₁R) (mk y₂l y₂r y₂L y₂R) := exists_left_moves_mul

lemma memᵣ_mul_iff : Π {x y₁ y₂ : pgame},
x ∈ᵣ y₁ * y₂ ↔
(∃ i j, x ≡ y₁.move_left i * y₂ + y₁ * y₂.move_right j - y₁.move_left i * y₂.move_right j) ∨
(∃ i j, x ≡ y₁.move_right i * y₂ + y₁ * y₂.move_left j - y₁.move_right i * y₂.move_left j)
| (mk xl xr xL xR) (mk y₁l y₁r y₁L y₁R) (mk y₂l y₂r y₂L y₂R) := exists_right_moves_mul

/-- `x * y` and `y * x` have the same moves. -/
protected lemma mul_comm : Π (x y : pgame.{u}), x * y ≡ y * x
| ⟨xl, xr, xL, xR⟩ ⟨yl, yr, yL, yR⟩ := begin
refine identical.ext (λ z, _) (λ z, _),
{ simp_rw [memₗ_mul_iff], dsimp, rw [@exists_comm xl, @exists_comm xr],
simp_rw [((((mul_comm _ _).add (mul_comm _ _)).trans ((_ * xL _).add_comm _)).sub
(mul_comm _ _)).congr_right,
((((mul_comm _ _).add (mul_comm _ _)).trans ((_ * xR _).add_comm _)).sub
(mul_comm _ _)).congr_right], },
{ simp_rw [memᵣ_mul_iff], dsimp, rw [@exists_comm xl, @exists_comm xr, or.comm],
simp_rw [((((mul_comm _ _).add (mul_comm _ _)).trans ((_ * xL _).add_comm _)).sub
(mul_comm _ _)).congr_right,
((((mul_comm _ _).add (mul_comm _ _)).trans ((_ * xR _).add_comm _)).sub
(mul_comm _ _)).congr_right], },
YaelDillies marked this conversation as resolved.
Show resolved Hide resolved
end
using_well_founded { dec_tac := pgame_wf_tac }

/-- `x * y` and `y * x` have the same moves. -/
def mul_comm_relabelling : Π (x y : pgame.{u}), x * y ≡r y * x
| ⟨xl, xr, xL, xR⟩ ⟨yl, yr, yL, yR⟩ := begin
Expand Down Expand Up @@ -291,6 +342,9 @@ by { cases x, apply sum.is_empty }
instance is_empty_zero_mul_right_moves (x : pgame.{u}) : is_empty (0 * x).right_moves :=
by { cases x, apply sum.is_empty }

/-- `x * 0` has exactly the same moves as `0`. -/
protected lemma mul_zero (x : pgame) : x * 0 ≡ 0 := identical_zero _

/-- `x * 0` has exactly the same moves as `0`. -/
def mul_zero_relabelling (x : pgame) : x * 0 ≡r 0 := relabelling.is_empty _

Expand All @@ -300,6 +354,9 @@ theorem mul_zero_equiv (x : pgame) : x * 0 ≈ 0 := (mul_zero_relabelling x).equ
@[simp] theorem quot_mul_zero (x : pgame) : ⟦x * 0⟧ = ⟦0⟧ :=
@quotient.sound _ _ (x * 0) _ x.mul_zero_equiv

/-- `0 * x` has exactly the same moves as `0`. -/
protected lemma zero_mul (x : pgame) : 0 * x ≡ 0 := identical_zero _

/-- `0 * x` has exactly the same moves as `0`. -/
def zero_mul_relabelling (x : pgame) : 0 * x ≡r 0 := relabelling.is_empty _

Expand All @@ -321,6 +378,39 @@ def neg_mul_relabelling : Π (x y : pgame.{u}), -x * y ≡r -(x * y)
end
using_well_founded { dec_tac := pgame_wf_tac }

/-- `x * -y` and `-(x * y)` have the same moves. -/
lemma mul_neg : Π (x y : pgame.{u}), x * -y = -(x * y)
| (mk xl xr xL xR) (mk yl yr yL yR) := begin
refine ext rfl rfl _ _,
{ rintros (⟨i, j⟩ | ⟨i, j⟩) _ ⟨rfl⟩,
{ refine (@mul_move_left_inl (mk xl xr xL xR) (-mk yl yr yL yR) i j).trans _,
dsimp [to_left_moves_neg],
rw [pgame.neg_sub', pgame.neg_add],
congr',
exacts [mul_neg _ (mk _ _ _ _), mul_neg _ _, mul_neg _ _], },
{ refine (@mul_move_left_inr (mk xl xr xL xR) (-mk yl yr yL yR) i j).trans _,
dsimp [to_left_moves_neg],
rw [pgame.neg_sub', pgame.neg_add],
congr',
exacts [mul_neg _ (mk _ _ _ _), mul_neg _ _, mul_neg _ _], }, },
{ rintros (⟨i, j⟩ | ⟨i, j⟩) _ ⟨rfl⟩,
{ refine (@mul_move_right_inl (mk xl xr xL xR) (-mk yl yr yL yR) i j).trans _,
dsimp [to_left_moves_neg],
rw [pgame.neg_sub', pgame.neg_add],
congr',
exacts [mul_neg _ (mk _ _ _ _), mul_neg _ _, mul_neg _ _], },
{ refine (@mul_move_right_inr (mk xl xr xL xR) (-mk yl yr yL yR) i j).trans _,
dsimp [to_left_moves_neg],
rw [pgame.neg_sub', pgame.neg_add],
congr',
exacts [mul_neg _ (mk _ _ _ _), mul_neg _ _, mul_neg _ _], }, },
end
using_well_founded { dec_tac := pgame_wf_tac }

/-- `-x * y` and `-(x * y)` have the same moves. -/
lemma neg_mul (x y : pgame.{u}) : -x * y ≡ -(x * y) :=
vihdzp marked this conversation as resolved.
Show resolved Hide resolved
((pgame.mul_comm _ _).trans (of_eq (mul_neg _ _))).trans (pgame.mul_comm _ _).neg

@[simp] theorem quot_neg_mul (x y : pgame) : ⟦-x * y⟧ = -⟦x * y⟧ :=
quot.sound (neg_mul_relabelling x y).equiv

Expand Down Expand Up @@ -408,11 +498,29 @@ def mul_one_relabelling : Π (x : pgame.{u}), x * 1 ≡r x
try { rintro (⟨i, ⟨ ⟩⟩ | ⟨i, ⟨ ⟩⟩) }; try { intro i };
dsimp;
apply (relabelling.sub_congr (relabelling.refl _) (mul_zero_relabelling _)).trans;
rw sub_zero;
rw sub_zero_eq_add_zero;
exact (add_zero_relabelling _).trans (((mul_one_relabelling _).add_congr
(mul_zero_relabelling _)).trans $ add_zero_relabelling _)
end

/-- `1 * x` has the same moves as `x`. -/
lemma one_mul : Π (x : pgame.{u}), 1 * x ≡ x
| ⟨xl, xr, xL, xR⟩ := begin
refine identical.ext (λ z, _) (λ z, _),
{ simp_rw [memₗ_mul_iff], dsimp, simp_rw [is_empty.exists_iff, or_false, exists_const],
simp_rw [(((((pgame.zero_mul _).add (one_mul _)).trans (pgame.zero_add _)).sub
(xL _).zero_mul).trans (pgame.sub_zero _)).congr_right],
refl, },
{ simp_rw [memᵣ_mul_iff], dsimp, simp_rw [is_empty.exists_iff, or_false, exists_const],
simp_rw [(((((pgame.zero_mul _).add (one_mul _)).trans (pgame.zero_add _)).sub
(xR _).zero_mul).trans (pgame.sub_zero _)).congr_right],
refl, },
end
using_well_founded { dec_tac := pgame_wf_tac }

/-- `x * 1` has the same moves as `x`. -/
lemma mul_one (x : pgame.{u}) : x * 1 ≡ x := (x.mul_comm _).trans x.one_mul

@[simp] theorem quot_mul_one (x : pgame) : ⟦x * 1⟧ = ⟦x⟧ := quot.sound $ mul_one_relabelling x

/-- `x * 1` is equivalent to `x`. -/
Expand Down Expand Up @@ -553,6 +661,15 @@ def inv' : pgame → pgame
theorem zero_lf_inv' : ∀ (x : pgame), 0 ⧏ inv' x
| ⟨xl, xr, xL, xR⟩ := by { convert lf_mk _ _ inv_ty.zero, refl }

/-- `inv' 0` has exactly the same moves as `1`. -/
lemma inv'_zero' : inv' 0 ≡ (1 : pgame.{u}) :=
begin
refine ⟨_, _⟩,
{ simp_rw [unique.forall_iff, unique.exists_iff, and_self, pgame.inv_val_is_empty],
exact identical_zero _, },
{ simp_rw [is_empty.forall_iff, and_self], },
end

/-- `inv' 0` has exactly the same moves as `1`. -/
def inv'_zero : inv' 0 ≡r 1 :=
begin
Expand All @@ -569,6 +686,19 @@ end

theorem inv'_zero_equiv : inv' 0 ≈ 1 := inv'_zero.equiv

universe v

/-- `inv' 1` has exactly the same moves as `1`. -/
lemma inv'_one' : inv'.{u} 1 ≡ 1 :=
begin
haveI inst : is_empty {i : punit.{u+1} // (0 : pgame.{u}) < 0},
{ rw lt_self_iff_false, apply_instance },
refine ⟨_, _⟩,
{ simp_rw [unique.forall_iff, unique.exists_iff, pgame.inv_val_is_empty, and_self],
exact identical_zero _, },
{ simp_rw [is_empty.forall_iff, and_true], },
end

/-- `inv' 1` has exactly the same moves as `1`. -/
def inv'_one : inv' 1 ≡r (1 : pgame.{u}) :=
begin
Expand Down Expand Up @@ -602,6 +732,10 @@ by { classical, exact (if_neg h.lf.not_equiv').trans (if_pos h) }
theorem inv_eq_of_lf_zero {x : pgame} (h : x ⧏ 0) : x⁻¹ = -inv' (-x) :=
by { classical, exact (if_neg h.not_equiv).trans (if_neg h.not_gt) }

/-- `1⁻¹` has exactly the same moves as `1`. -/
lemma inv_one' : 1⁻¹ ≡ 1 :=
by { rw inv_eq_of_pos pgame.zero_lt_one, exact inv'_one' }

/-- `1⁻¹` has exactly the same moves as `1`. -/
def inv_one : 1⁻¹ ≡r 1 :=
by { rw inv_eq_of_pos pgame.zero_lt_one, exact inv'_one }
Expand Down
Loading