-
Notifications
You must be signed in to change notification settings - Fork 35
5GMdata Home
Aldebaro Klautau edited this page Sep 7, 2018
·
6 revisions
If you use any data or code, please cite: "5G MIMO Data for Machine Learning: Application to Beam-Selection using Deep Learning", Aldebaro Klautau, Pedro Batista, Nuria Gonzalez-Prelcic, Yuyang Wang and Robert W. Heath Jr., ITA'2018 (available at http://ita.ucsd.edu/workshop/18/files/paper/paper_3313.pdf).
Bibtex entry:
@inproceedings{Klautau18,
author = {Aldebaro Klautau and Pedro Batista and Nuria Gonzalez-Prelcic and Yuyang Wang and Robert W. {Heath Jr.}},
title = {{5G} {MIMO} Data for Machine Learning: Application to Beam-Selection using Deep Learning},
booktitle = {2018 Information Theory and Applications Workshop, San Diego},
pages = {1--1},
year = {2018},
url = {http://ita.ucsd.edu/workshop/18/files/paper/paper_3313.pdf}
}
If just looking for the data, jump to datasets.
Go here.
https://www.nist.gov/ctl/5g-mmwave-channel-model-alliance
https://www.deepsig.io/datasets
https://www.lasse.ufpa.br/UFPAtelecom/
https://github.com/gnuradio/SigMF#contributing (Metadata format)