Skip to content

Commit

Permalink
Merge pull request IntelLabs#154 from laserkelvin/xpu-enabling
Browse files Browse the repository at this point in the history
Enable Intel XPU usage and examples
  • Loading branch information
smiret-intel authored Mar 15, 2024
2 parents b54ae69 + fc44040 commit 1920deb
Show file tree
Hide file tree
Showing 7 changed files with 296 additions and 4 deletions.
4 changes: 4 additions & 0 deletions .github/workflows/run_pytest_endtoend.yml
Original file line number Diff line number Diff line change
Expand Up @@ -25,6 +25,10 @@ jobs:
cache-environment: true
post-cleanup: 'all'
generate-run-shell: true
- name: Install current version of matsciml
run: |
pip install .
shell: micromamba-shell {0}
- name: Install PyTest
run: |
pip install pytest pytest-dependency
Expand Down
4 changes: 4 additions & 0 deletions .github/workflows/run_pytest_lightning.yml
Original file line number Diff line number Diff line change
Expand Up @@ -19,6 +19,10 @@ jobs:
cache-environment: true
post-cleanup: 'all'
generate-run-shell: true
- name: Install current matsciml
run: |
pip install .
shell: micromamba-shell {0}
- name: Install PyTest
run: |
pip install pytest pytest-dependency
Expand Down
42 changes: 42 additions & 0 deletions examples/devices/xpu_example.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,42 @@
from __future__ import annotations

import pytorch_lightning as pl

from matsciml.datasets.transforms import PointCloudToGraphTransform
from matsciml.lightning.data_utils import MatSciMLDataModule

# this is needed to register strategy and accelerator
from matsciml.lightning import xpu # noqa: F401
from matsciml.models.base import ScalarRegressionTask
from matsciml.models.pyg import EGNN

"""
This example script runs through a fast development run of the IS2RE devset
in combination with a PyG implementation of EGNN.
"""

# construct IS2RE relaxed energy regression with PyG implementation of E(n)-GNN
task = ScalarRegressionTask(
encoder_class=EGNN,
encoder_kwargs={"hidden_dim": 128, "output_dim": 64},
task_keys=["energy_relaxed"],
)
# matsciml devset for OCP are serialized with DGL - this transform goes between the two frameworks
dm = MatSciMLDataModule.from_devset(
"IS2REDataset",
dset_kwargs={
"transforms": [
PointCloudToGraphTransform(
"pyg",
cutoff_dist=20.0,
node_keys=["pos", "atomic_numbers"],
),
],
},
)

# run a quick training loop on a single XPU device with BF16 automatic mixed precision
trainer = pl.Trainer(
fast_dev_run=10, strategy="single_xpu", accelerator="xpu", precision="bf16-mixed"
)
trainer.fit(task, datamodule=dm)
16 changes: 16 additions & 0 deletions matsciml/__init__.py
Original file line number Diff line number Diff line change
@@ -1,3 +1,19 @@
from __future__ import annotations

from logging import getLogger

# determine if intel libraries are available
from matsciml.common.packages import package_registry

__version__ = "1.1.0"

logger = getLogger(__file__)


if package_registry["ipex"]:
try:
import intel_extension_for_pytorch # noqa: F401
except ImportError as e:
logger.warning(f"Unable to load IPEX because of {e} - XPU may not function.")
if package_registry["ccl"]:
import oneccl_bindings_for_pytorch # noqa: F401
1 change: 1 addition & 0 deletions matsciml/lightning/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,5 +4,6 @@

from matsciml.lightning.ddp import *
from matsciml.lightning.data_utils import *
from matsciml.lightning.xpu import *

__all__ = ["MatSciMLDataModule", "MultiDataModule"]
7 changes: 3 additions & 4 deletions matsciml/lightning/ddp.py
Original file line number Diff line number Diff line change
Expand Up @@ -7,17 +7,16 @@
from typing import Any, Callable

import torch
from lightning_fabric.plugins.collectives.torch_collective import default_pg_timeout
import pytorch_lightning as pl
from pytorch_lightning.plugins import CheckpointIO
from pytorch_lightning.plugins.environments import LightningEnvironment
from pytorch_lightning.plugins.precision import PrecisionPlugin
from pytorch_lightning.plugins.precision import Precision
from pytorch_lightning.strategies import StrategyRegistry
from pytorch_lightning.strategies.ddp import DDPStrategy

__all__ = ["MPIEnvironment", "MPIDDPStrategy"]

# majority of these imports are just for type hinting!
default_pg_timeout = timedelta(seconds=1800)


class MPIEnvironment(LightningEnvironment):
Expand Down Expand Up @@ -69,7 +68,7 @@ def __init__(
accelerator: pl.accelerators.Accelerator | None = None,
parallel_devices: list[torch.device] | None = None,
checkpoint_io: CheckpointIO | None = None,
precision_plugin: PrecisionPlugin | None = None,
precision_plugin: Precision | None = None,
ddp_comm_state: object | None = None,
ddp_comm_hook: Callable | None = None,
ddp_comm_wrapper: Callable | None = None,
Expand Down
226 changes: 226 additions & 0 deletions matsciml/lightning/xpu.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,226 @@
# Copyright (C) 2023 Intel Corporation
# SPDX-License-Identifier: MIT License
from __future__ import annotations
from datetime import timedelta
from logging import getLogger
from typing import Callable, Union, List, Dict, Any

from pytorch_lightning.plugins import CheckpointIO, ClusterEnvironment
from pytorch_lightning.plugins.precision import Precision

from matsciml.common.packages import package_registry
from matsciml.lightning.ddp import MPIEnvironment
from pytorch_lightning.accelerators import Accelerator, AcceleratorRegistry
from pytorch_lightning.strategies import SingleDeviceStrategy, StrategyRegistry
from pytorch_lightning.strategies.ddp import DDPStrategy
import torch
from torch import distributed as dist

default_pg_timeout = timedelta(seconds=1800)

logger = getLogger(__file__)

if package_registry["ipex"]:
try:
import intel_extension_for_pytorch as ipex # noqa: F401
except ImportError as e:
logger.warning(f"Unable to import IPEX due to {e} - XPU may not function.")

__all__ = ["XPUAccelerator", "SingleXPUStrategy", "DDPXPUStrategy"]

class XPUAccelerator(Accelerator):

"""
Implements a Lightning Accelerator class for Intel GPU usage. Depends
on Intel Extension for PyTorch to be installed.
"""

@staticmethod
def parse_devices(devices: Union[int, List[int]]) -> List[int]:
"""
Parse the `trainer` input for devices and homogenize them.
Parameters
----------
devices : Union[int, List[int]]
Single or list of device numbers to use
Returns
-------
List[int]
List of device numbers to use
"""
if isinstance(devices, int):
devices = [
devices,
]
return devices

def setup_device(self, device: torch.device) -> None:
"""
Configure the current process to use a specified device.
Perhaps unreliably and misguiding, the IPEX implementation of this method
tries to mirror the CUDA version but `ipex.xpu.set_device` actually refuses
to accept anything other than an index. I've tried to work around this
by grabbing the index from the device if possible, and just setting
it to the first device if not using a distributed/multitile setup.
"""
# first try and see if we can grab the index from the device
index = getattr(device, "index", None)
if index is None and not dist.is_initialized():
index = 0
torch.xpu.set_device(index)

def teardown(self) -> None:
# as it suggests, this is run on cleanup
torch.xpu.empty_cache()

def get_device_stats(self, device) -> Dict[str, Any]:
return torch.xpu.memory_stats(device)

@staticmethod
def get_parallel_devices(devices: List[int]) -> List[torch.device]:
"""
Return a list of torch devices corresponding to what is available.
Essentially maps indices to `torch.device` objects.
Parameters
----------
devices : List[int]
List of integers corresponding to device numbers
Returns
-------
List[torch.device]
List of `torch.device` objects for each device
"""
return [torch.device("xpu", i) for i in devices]

@staticmethod
def auto_device_count() -> int:
# by default, PVC has two tiles per GPU
return torch.xpu.device_count()

@staticmethod
def is_available() -> bool:
"""
Determines if an XPU is actually available.
Returns
-------
bool
True if devices are detected, otherwise False
"""
try:
return torch.xpu.device_count() != 0
except (AttributeError, NameError):
return False

@classmethod
def register_accelerators(cls, accelerator_registry) -> None:
accelerator_registry.register(
"xpu",
cls,
description="Intel Data Center GPU Max - codename Ponte Vecchio",
)

# add PVC to the registry
AcceleratorRegistry.register("xpu", XPUAccelerator)

class SingleXPUStrategy(SingleDeviceStrategy):

"""
This class implements the strategy for using a single PVC tile.
"""

strategy_name = "pvc_single"

def __init__(
self,
device: str | None = "xpu",
checkpoint_io=None,
precision_plugin=None,
):
super().__init__(
device=device,
accelerator=XPUAccelerator(),
checkpoint_io=checkpoint_io,
precision_plugin=precision_plugin,
)

@property
def is_distributed(self) -> bool:
return False

def setup(self, trainer) -> None:
self.model_to_device()
super().setup(trainer)

def setup_optimizers(self, trainer) -> None:
super().setup_optimizers(trainer)

def model_to_device(self) -> None:
self.model.to(self.root_device)

@classmethod
def register_strategies(cls, strategy_registry) -> None:
strategy_registry.register(
cls.strategy_name,
cls,
description=f"{cls.__class__.__name__} - uses a single XPU tile for compute.",
)

class DDPXPUStrategy(DDPStrategy):
"""
Defines a strategy that uses multiple XPU devices with
distributed data parallelism.
"""

strategy_name = "ddp_with_xpu"

def __init__(
self,
parallel_devices: List[torch.device] | None = None,
cluster_environment: ClusterEnvironment | None = None,
checkpoint_io: CheckpointIO | None = None,
precision_plugin: Precision | None = None,
ddp_comm_state: object | None = None,
ddp_comm_hook: Callable[..., Any] | None = None,
ddp_comm_wrapper: Callable[..., Any] | None = None,
model_averaging_period: int | None = None,
process_group_backend: str | None = "ccl",
timeout: timedelta | None = default_pg_timeout,
**kwargs: Any,
) -> None:
accelerator = XPUAccelerator()
if cluster_environment is None:
cluster_environment = MPIEnvironment()
super().__init__(
accelerator,
parallel_devices,
cluster_environment,
checkpoint_io,
precision_plugin,
ddp_comm_state,
ddp_comm_hook,
ddp_comm_wrapper,
model_averaging_period,
process_group_backend,
timeout,
**kwargs,
)

@classmethod
def register_strategies(cls, strategy_registry) -> None:
strategy_registry.register(
cls.strategy_name,
cls,
description=f"{cls.__class__.__name__} - uses distributed data parallelism"
" to divide data across multiple XPU tiles.",
)

StrategyRegistry.register(
"single_xpu",
SingleXPUStrategy,
description="Strategy utilizing a single Intel GPU device or tile.",
)
StrategyRegistry.register(
"ddp_with_xpu",
DDPXPUStrategy,
description="Distributed data parallel strategy using multiple Intel GPU devices or tiles.",
)

0 comments on commit 1920deb

Please sign in to comment.