Skip to content

Add infer singleton option in workflow and add gene information in RGP output #1010

Add infer singleton option in workflow and add gene information in RGP output

Add infer singleton option in workflow and add gene information in RGP output #1010

Workflow file for this run

name: CI
on:
pull_request:
branches:
- '*'
# Allows you to run this workflow manually from the Actions tab
workflow_dispatch:
env:
NUM_CPUS: 1
# A workflow run is made up of one or more jobs that can run sequentially or in parallel
jobs:
test:
name: test PPanGGOLiN on ${{ matrix.os }} with python ${{ matrix.python-version }}
# The type of runner that the job will run on
runs-on: ${{ matrix.os }}
strategy:
matrix:
os: ['ubuntu-latest', 'macos-13']
python-version: ['3.8', '3.10']
steps:
# Get number of cpu available on the current runner
- name: Get core number on linux
if: matrix.os == 'ubuntu-latest'
run: |
nb_cpu_linux=`nproc`
echo "Number of cores avalaible on the current linux runner $nb_cpu_linux"
echo "NUM_CPUS=$nb_cpu_linux" >> "$GITHUB_ENV"
- name: Get core number on macos
if: matrix.os == 'macos-13'
run: |
nb_cpu_macos=`sysctl -n hw.ncpu`
echo "Number of cores avalaible on the current macos runner $nb_cpu_macos"
echo "NUM_CPUS=$nb_cpu_macos" >> "$GITHUB_ENV"
# Checks-out your repository under $GITHUB_WORKSPACE, so your job can access it
- uses: actions/checkout@v4
# Install requirements with miniconda
- uses: conda-incubator/setup-miniconda@v3
with:
python-version: ${{ matrix.python-version }}
channels: conda-forge,bioconda,defaults
environment-file: ppanggolin_env.yaml
activate-environment: ppanggolin
- name: Install ppanggolin
shell: bash -l {0}
run: |
pip install .[test]
mmseqs version
# Check that it is installed and displays help without error
- name: Check that PPanGGOLiN is installed
shell: bash -l {0}
run: |
ppanggolin --version
ppanggolin --help
# Check that unit tests are all passing
- name: Unit tests
shell: bash -l {0}
run: pytest
# Test the complete workflow
- name: Complete workflow
shell: bash -l {0}
run: |
cd testingDataset
mkdir info_to_test
ppanggolin all --cpu $NUM_CPUS --fasta genomes.fasta.list --output mybasicpangenome
ppanggolin info --pangenome mybasicpangenome/pangenome.h5 --content --parameters --status > info_to_test/mybasicpangenome_info.yaml
cat info_to_test/mybasicpangenome_info.yaml
cd -
# test most options calls. If there is a change in the API somewhere that was not taken into account (whether in the options for the users, or the classes for the devs), this should fail, otherwise everything is probably good.
#--draw_hotspots option is problematic on macOS.
- name: Step by Step workflow with most options calls
shell: bash -l {0}
run: |
cd testingDataset
ppanggolin annotate --fasta genomes.fasta.list --output stepbystep --kingdom bacteria --cpu $NUM_CPUS
ppanggolin cluster -p stepbystep/pangenome.h5 --coverage 0.8 --identity 0.8 --cpu $NUM_CPUS
ppanggolin graph -p stepbystep/pangenome.h5 -r 10
ppanggolin partition --output stepbystep -f -p stepbystep/pangenome.h5 --cpu $NUM_CPUS -b 2.6 -ms 10 -fd -ck 500 -Kmm 3 12 -im 0.04 --draw_ICL
ppanggolin rarefaction --output stepbystep -f -p stepbystep/pangenome.h5 --depth 5 --min 1 --max 50 -ms 10 -fd -ck 30 -K 3 --soft_core 0.9 -se $RANDOM
ppanggolin draw -p stepbystep/pangenome.h5 --tile_plot --nocloud --soft_core 0.92 --ucurve --output stepbystep -f
ppanggolin rgp -p stepbystep/pangenome.h5 --persistent_penalty 2 --variable_gain 1 --min_score 3 --dup_margin 0.05
ppanggolin spot -p stepbystep/pangenome.h5 --output stepbystep --spot_graph --overlapping_match 2 --set_size 3 --exact_match_size 1 -f
ppanggolin draw -p stepbystep/pangenome.h5 --draw_spots -o stepbystep -f
ppanggolin module -p stepbystep/pangenome.h5 --transitive 4 --size 3 --jaccard 0.86 --dup_margin 0.05
ppanggolin write_pangenome -p stepbystep/pangenome.h5 --output stepbystep -f --soft_core 0.9 --dup_margin 0.06 --gexf --light_gexf --csv --Rtab --stats --partitions --compress --json --spots --regions --borders --families_tsv --cpu 1
ppanggolin write_genomes -p stepbystep/pangenome.h5 --output stepbystep -f --fasta genomes.fasta.list --gff --proksee --table
ppanggolin fasta -p stepbystep/pangenome.h5 --output stepbystep -f --prot_families all --gene_families shell --regions all --fasta genomes.fasta.list
ppanggolin fasta -p stepbystep/pangenome.h5 --output stepbystep -f --prot_families rgp --gene_families rgp --compress
ppanggolin fasta -p stepbystep/pangenome.h5 --output stepbystep -f --prot_families softcore --gene_families softcore
ppanggolin fasta -p stepbystep/pangenome.h5 --output stepbystep -f --prot_families module_0
ppanggolin fasta -p stepbystep/pangenome.h5 --output stepbystep -f --genes core --proteins cloud
ppanggolin fasta -p stepbystep/pangenome.h5 --output stepbystep -f --gene_families module_0 --genes module_0 --compress
ppanggolin fasta -p stepbystep/pangenome.h5 --output stepbystep -f --proteins cloud --cpu $NUM_CPUS --keep_tmp --compress
ppanggolin draw -p stepbystep/pangenome.h5 --draw_spots --spots all -o stepbystep -f
ppanggolin metrics -p stepbystep/pangenome.h5 --genome_fluidity --no_print_info --recompute_metrics --log metrics.log
ppanggolin info --pangenome stepbystep/pangenome.h5 > info_to_test/stepbystep_info.yaml
cat info_to_test/stepbystep_info.yaml
cd -
- name: gbff parsing and MSA computing
shell: bash -l {0}
run: |
cd testingDataset
ppanggolin workflow --cpu $NUM_CPUS --anno genomes.gbff.list --output myannopang
ppanggolin msa --pangenome myannopang/pangenome.h5 --source dna --partition core -o myannopang/ -f --use_gene_id --phylo --single_copy --cpu $NUM_CPUS
ppanggolin info --pangenome myannopang/pangenome.h5 > info_to_test/myannopang_info.yaml
cat info_to_test/myannopang_info.yaml
cd -
- name: clusters reading from external file
shell: bash -l {0}
run: |
cd testingDataset
ppanggolin panrgp --anno genomes.gbff.list --cluster clusters.tsv --output readclusterpang --cpu $NUM_CPUS
ppanggolin annotate --anno genomes.gbff.list --output readclusters --cpu $NUM_CPUS
ppanggolin cluster --clusters clusters.tsv -p readclusters/pangenome.h5 --cpu $NUM_CPUS
ppanggolin msa --pangenome readclusterpang/pangenome.h5 --partition persistent --phylo -o readclusterpang/msa/ -f --cpu $NUM_CPUS
cd -
- name: testing rgp_cluster command
shell: bash -l {0}
run: |
cd testingDataset
ppanggolin rgp_cluster --pangenome mybasicpangenome/pangenome.h5
ppanggolin rgp_cluster --pangenome mybasicpangenome/pangenome.h5 --ignore_incomplete_rgp --grr_metric max_grr -f --graph_formats graphml gexf
ppanggolin rgp_cluster --pangenome mybasicpangenome/pangenome.h5 --no_identical_rgp_merging -o rgp_clustering_no_identical_rgp_merging --graph_formats graphml
cd -
- name: testing align command
shell: bash -l {0}
run: |
cd testingDataset
ppanggolin align --pangenome mybasicpangenome/pangenome.h5 --sequences some_chlam_proteins.fasta \
--output test_align --draw_related --getinfo --fast --cpu $NUM_CPUS
cd -
- name: testing context command
shell: bash -l {0}
run: |
cd testingDataset
ppanggolin context --pangenome myannopang/pangenome.h5 --sequences some_chlam_proteins.fasta --output test_context --fast --cpu $NUM_CPUS
# test from gene family ids. Test here with one family of module 1. The context should find all families of module 1
echo AP288_RS05055 > one_family_of_module_1.txt
ppanggolin context --pangenome myannopang/pangenome.h5 --family one_family_of_module_1.txt --output test_context_from_id --cpu $NUM_CPUS
cd -
- name: testing metadata command
shell: bash -l {0}
run: |
cd testingDataset
ppanggolin metadata -p mybasicpangenome/pangenome.h5 -s db1 -m metadata/metadata_genes.tsv -a genes
ppanggolin metadata -p mybasicpangenome/pangenome.h5 -s db2 -m metadata/metadata_genomes.tsv -a genomes
ppanggolin metadata -p mybasicpangenome/pangenome.h5 -s db3 -m metadata/metadata_families.tsv -a families --omit
ppanggolin metadata -p mybasicpangenome/pangenome.h5 -s db4 -m metadata/metadata_rgps.tsv -a RGPs
ppanggolin metadata -p mybasicpangenome/pangenome.h5 -s db5 -m metadata/metadata_contigs.tsv -a contigs
ppanggolin metadata -p mybasicpangenome/pangenome.h5 -s db6 -m metadata/metadata_modules.tsv -a modules
ppanggolin write_metadata -p mybasicpangenome/pangenome.h5 -o metadata_flat_output
ppanggolin write_pangenome -p mybasicpangenome/pangenome.h5 --output mybasicpangenome -f --gexf --light_gexf --cpu $NUM_CPUS
ppanggolin rgp_cluster --pangenome mybasicpangenome/pangenome.h5 -o rgp_cluster_with_metadata --graph_formats graphml
cd -
- name: testing config file
shell: bash -l {0}
run: |
cd testingDataset
ppanggolin utils --default_config panrgp -o panrgp_default_config.yaml
ppanggolin panrgp --anno genomes.gbff.list --cluster clusters.tsv -o test_config --config panrgp_default_config.yaml --cpu $NUM_CPUS
cd -
- name: testing projection cmd
shell: bash -l {0}
run: |
cd testingDataset
head genomes.gbff.list | sed 's/^/input_genome_/g' > genomes.gbff.head.list
ppanggolin projection --pangenome stepbystep/pangenome.h5 -o projection_from_list_of_gbff --anno genomes.gbff.head.list --gff --proksee --cpu $NUM_CPUS
head genomes.fasta.list | sed 's/^/input_genome_/g' > genomes.fasta.head.list
ppanggolin projection --pangenome myannopang/pangenome.h5 -o projection_from_list_of_fasta --fasta genomes.fasta.head.list --gff --proksee --cpu $NUM_CPUS
ppanggolin projection --pangenome mybasicpangenome/pangenome.h5 -o projection_from_single_fasta \
--genome_name chlam_A --fasta FASTA/GCF_002776845.1_ASM277684v1_genomic.fna.gz \
--spot_graph --graph_formats graphml --fast --keep_tmp -f --add_sequences --gff --proksee --table --add_metadata --cpu $NUM_CPUS
ppanggolin projection --pangenome mybasicpangenome/pangenome.h5 -o projection_from_gff_prodigal \
--genome_name chlam_annotated_with_prodigal --anno GBFF/GCF_003788785.1_ct114V1_genomic_prodigal_annotation.gff.gz \
--gff --table --cpu $NUM_CPUS
- name: testing write_genome_cmds
shell: bash -l {0}
run: |
cd testingDataset
head genomes.gbff.list | cut -f1 > genome_names.gbff.head.list
ppanggolin write_genomes -p myannopang/pangenome.h5 --output flat_genomes_from_genome_files -f \
--anno genomes.gbff.list --gff --table --genomes genome_names.gbff.head.list
ppanggolin write_genomes -p stepbystep/pangenome.h5 --output flat_genomes_from_cmdline_genomes --proksee \
--genomes GCF_006508185.1_ASM650818v1_genomic,GCF_002088315.1_ASM208831v1_genomic
head genomes.fasta.list | cut -f1 > genome_names.fasta.head.list
# Default separator is a pipe but a pipe is found in a value of metadata db1. That is why we use another separator here.
ppanggolin write_genomes -p mybasicpangenome/pangenome.h5 --output mybasicpangenome/genomes_outputs \
--genomes genome_names.fasta.head.list \
-f --gff --add_metadata --table --metadata_sep § --proksee
# Pipe separatore is found in metadata source db1. if we don't require this source then the writting with pipe is work fine.
ppanggolin write_genomes -p mybasicpangenome/pangenome.h5 --output mybasicpangenome/genomes_outputs_with_metadata -f --gff --proksee --table --add_metadata --metadata_sources db2 db3 db4
- name: Archive diff files
uses: actions/upload-artifact@v4
with:
name: comparison-results_${{ matrix.os }}_python${{ matrix.python-version }}
path: testingDataset/info_to_test/*
- name: testing info output
shell: bash -l {0}
run: |
cd testingDataset
python compare_results.py -e expected_info_files/ -t info_to_test/ -o diff_output