-
Notifications
You must be signed in to change notification settings - Fork 16
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
LZA (Leading zeros anticipation) (#741)
- Loading branch information
1 parent
ae4601c
commit 08e43d9
Showing
2 changed files
with
223 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,111 @@ | ||
from amaranth import * | ||
from amaranth.utils import ceil_log2 | ||
from transactron import TModule, Method, def_method | ||
from coreblocks.func_blocks.fu.fpu.fpu_common import FPUParams | ||
from transactron.utils.amaranth_ext import count_leading_zeros | ||
|
||
|
||
class LZAMethodLayout: | ||
"""LZA module layouts for methods | ||
Parameters | ||
---------- | ||
fpu_params: FPUParams | ||
FPU parameters | ||
""" | ||
|
||
def __init__(self, *, fpu_params: FPUParams): | ||
""" | ||
sig_a - significand of a | ||
sig_b - significand of b | ||
carry - indicates if we want to predict result of a+b or a+b+1 | ||
shift_amount - position to shift needed to normalize number | ||
is_zero - indicates if result is zero | ||
""" | ||
self.predict_in_layout = [ | ||
("sig_a", fpu_params.sig_width), | ||
("sig_b", fpu_params.sig_width), | ||
("carry", 1), | ||
] | ||
self.predict_out_layout = [ | ||
("shift_amount", range(fpu_params.sig_width)), | ||
("is_zero", 1), | ||
] | ||
|
||
|
||
class LZAModule(Elaboratable): | ||
"""LZA module | ||
Based on: https://userpages.cs.umbc.edu/phatak/645/supl/lza/lza-survey-arith01.pdf | ||
After performing subtracion, we may have to normalize floating point numbers and | ||
For that, we have to know the number of leading zeros. | ||
The most basic approach includes using LZC (leading zero counter) after subtracion, | ||
a more advanced approach includes using LZA (Leading Zero Anticipator) to predict the number of | ||
leading zeroes. It is worth noting that this LZA module works under assumptions that | ||
significands are in two's complement and that before complementation sig_a was greater | ||
or equal to sig_b. Another thing worth noting is that LZA works with error = 1. | ||
That means that if 'n' is the result of the LZA module, in reality, to normalize | ||
number we may have to shift left by 'n' or 'n+1'. There are few techniques of | ||
dealing with that error like specially designed shifters or predicting the error | ||
but the most basic approach is to just use multiplexer after shifter to perform | ||
one more shift left if necessary. | ||
Parameters | ||
---------- | ||
fpu_params: FPUParams | ||
FPU rounding module parameters | ||
Attributes | ||
---------- | ||
predict_request: Method | ||
Transactional method for initiating leading zeros prediction. | ||
Takes 'predict_in_layout' as argument | ||
Returns shift amount as 'predict_out_layout' | ||
""" | ||
|
||
def __init__(self, *, fpu_params: FPUParams): | ||
|
||
self.lza_params = fpu_params | ||
self.method_layouts = LZAMethodLayout(fpu_params=self.lza_params) | ||
self.predict_request = Method( | ||
i=self.method_layouts.predict_in_layout, | ||
o=self.method_layouts.predict_out_layout, | ||
) | ||
|
||
def elaborate(self, platform): | ||
m = TModule() | ||
|
||
@def_method(m, self.predict_request) | ||
def _(sig_a, sig_b, carry): | ||
f_size = 2 ** ceil_log2(self.lza_params.sig_width) | ||
filler_size = f_size - self.lza_params.sig_width | ||
lower_ones = Const((2**filler_size) - 1, f_size) | ||
|
||
t = Signal(self.lza_params.sig_width + 1) | ||
g = Signal(self.lza_params.sig_width + 1) | ||
z = Signal(self.lza_params.sig_width + 1) | ||
f = Signal(f_size) | ||
shift_amount = Signal(range(self.lza_params.sig_width)) | ||
is_zero = Signal(1) | ||
|
||
m.d.av_comb += t.eq((sig_a ^ sig_b) << 1) | ||
m.d.av_comb += g.eq((sig_a & sig_b) << 1) | ||
m.d.av_comb += z.eq(((sig_a | sig_b) << 1)) | ||
with m.If(carry): | ||
m.d.av_comb += g[0].eq(1) | ||
m.d.av_comb += z[0].eq(1) | ||
|
||
for i in reversed(range(1, self.lza_params.sig_width + 1)): | ||
m.d.av_comb += f[i + filler_size - 1].eq((t[i] ^ z[i - 1])) | ||
|
||
m.d.av_comb += shift_amount.eq(0) | ||
m.d.av_comp += f.eq(f | lower_ones) | ||
m.d.av_comb += shift_amount.eq(count_leading_zeros(f)) | ||
|
||
m.d.av_comb += is_zero.eq((carry & t[1 : self.lza_params.sig_width].all())) | ||
|
||
return { | ||
"shift_amount": shift_amount, | ||
"is_zero": is_zero, | ||
} | ||
|
||
return m |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,112 @@ | ||
import random | ||
from coreblocks.func_blocks.fu.fpu.lza import * | ||
from coreblocks.func_blocks.fu.fpu.fpu_common import FPUParams | ||
from transactron import TModule | ||
from transactron.lib import AdapterTrans | ||
from transactron.testing import * | ||
from amaranth import * | ||
|
||
|
||
def clz(sig_a, sig_b, carry, sig_width): | ||
zeros = 0 | ||
msb_bit_mask = 1 << (sig_width - 1) | ||
sum = sig_a + sig_b + carry | ||
while 1: | ||
if not (sum & msb_bit_mask): | ||
zeros += 1 | ||
sum = sum << 1 | ||
else: | ||
return zeros | ||
|
||
|
||
class TestLZA(TestCaseWithSimulator): | ||
class LZAModuleTest(Elaboratable): | ||
def __init__(self, params: FPUParams): | ||
self.params = params | ||
|
||
def elaborate(self, platform): | ||
m = TModule() | ||
m.submodules.lza = lza = self.lza_module = LZAModule(fpu_params=self.params) | ||
m.submodules.predict = self.predict_request_adapter = TestbenchIO(AdapterTrans(lza.predict_request)) | ||
return m | ||
|
||
def test_manual(self): | ||
params = FPUParams(sig_width=24, exp_width=8) | ||
lza = TestLZA.LZAModuleTest(params) | ||
|
||
async def random_test(sim: TestbenchContext, seed: int, iters: int): | ||
xor_mask = (2**params.sig_width) - 1 | ||
random.seed(seed) | ||
for _ in range(iters): | ||
sig_a = random.randint(1 << (params.sig_width - 1), (2**params.sig_width) - 1) | ||
sig_b = random.randint(1 << (params.sig_width - 1), sig_a) | ||
sig_b = (sig_b ^ xor_mask) | (1 << params.sig_width) | ||
resp = await lza.predict_request_adapter.call(sim, {"sig_a": sig_a, "sig_b": sig_b, "carry": 0}) | ||
pred_lz = resp["shift_amount"] | ||
true_lz = clz(sig_a, sig_b, 0, params.sig_width) | ||
assert pred_lz == true_lz or (pred_lz + 1) == true_lz | ||
|
||
async def lza_test(sim: TestbenchContext): | ||
test_cases = [ | ||
{ | ||
"sig_a": 16368512, | ||
"sig_b": 409600, | ||
"carry": 0, | ||
}, | ||
{ | ||
"sig_a": 0, | ||
"sig_b": (2**24) - 1, | ||
"carry": 0, | ||
}, | ||
{ | ||
"sig_a": (2**24) // 2, | ||
"sig_b": (2**24) // 2, | ||
"carry": 0, | ||
}, | ||
{ | ||
"sig_a": 12582912, | ||
"sig_b": 12550144, | ||
"carry": 0, | ||
}, | ||
{ | ||
"sig_a": 16744448, | ||
"sig_b": 12615680, | ||
"carry": 0, | ||
}, | ||
{ | ||
"sig_a": 8421376, | ||
"sig_b": 8421376, | ||
"carry": 0, | ||
}, | ||
] | ||
expected_results = [ | ||
{"shift_amount": 13, "is_zero": 0}, | ||
{"shift_amount": 13, "is_zero": 0}, | ||
{"shift_amount": 23, "is_zero": 0}, | ||
{"shift_amount": 0, "is_zero": 1}, | ||
{"shift_amount": 0, "is_zero": 0}, | ||
{"shift_amount": 23, "is_zero": 0}, | ||
{"shift_amount": 0, "is_zero": 0}, | ||
{"shift_amount": 0, "is_zero": 0}, | ||
{"shift_amount": 0, "is_zero": 0}, | ||
{"shift_amount": 0, "is_zero": 0}, | ||
{"shift_amount": 7, "is_zero": 0}, | ||
{"shift_amount": 7, "is_zero": 0}, | ||
] | ||
for i in range(len(test_cases)): | ||
|
||
resp = await lza.predict_request_adapter.call(sim, test_cases[i]) | ||
assert resp["shift_amount"] == expected_results[2 * i]["shift_amount"] | ||
assert resp["is_zero"] == expected_results[2 * i]["is_zero"] | ||
|
||
test_cases[i]["carry"] = 1 | ||
resp = await lza.predict_request_adapter.call(sim, test_cases[i]) | ||
assert resp["shift_amount"] == expected_results[2 * i + 1]["shift_amount"] | ||
assert resp["is_zero"] == expected_results[2 * i + 1]["is_zero"] | ||
|
||
async def test_process(sim: TestbenchContext): | ||
await lza_test(sim) | ||
await random_test(sim, 2024, 20) | ||
|
||
with self.run_simulation(lza) as sim: | ||
sim.add_testbench(test_process) |