Skip to content

Commit

Permalink
Merge pull request #37 from wyy566/master
Browse files Browse the repository at this point in the history
updata ml algorithm lib
  • Loading branch information
tushengxia authored Mar 30, 2022
2 parents 3031ca7 + a3406aa commit 3d90485
Show file tree
Hide file tree
Showing 30 changed files with 938 additions and 51 deletions.
10 changes: 5 additions & 5 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -7,7 +7,7 @@ Introduction

The machine learning algorithm library running on Kunpeng processors is an acceleration library that provides a rich set of high-level tools for machine learning algorithms. It is based on the original APIs of Apache [Spark 2.3.2](https://github.com/apache/spark/tree/v2.3.2), [breeze 0.13.1](https://github.com/scalanlp/breeze/tree/releases/v0.13.1) and [xgboost 1.1.0](https://github.com/dmlc/xgboost/tree/release_1.0.0). The acceleration library for greatly improves the computing power in big data scenarios.

The library provides eighteen machine learning algorithms: support vector machine (SVM), random forest classifier (RFC), gradient boosting decision tree (GBDT), decision tree (DT), K-means clustering, linear regression, logistic regression algorithm, principal component analysis (PCA), singular value decomposition (SVD), latent dirichlet allocation (LDA), prefix-projected pattern prowth (Prefix-Span), alternating least squares (ALS), K-nearest neighbors (KNN), Covariance, Density-based spatial clustering of applicaitons with noise (DBSCAN), Pearson, Spearman, and XGboost. You can find the latest documentation on the project web page. This README file contains only basic setup instructions.
The library provides 21 machine learning algorithms: support vector machine (SVM), random forest classifier (RFC), gradient boosting decision tree (GBDT), decision tree (DT), K-means clustering, linear regression, logistic regression algorithm, principal component analysis (PCA), principal component analysis for Sparse Matrix(SPCA), singular value decomposition (SVD), latent dirichlet allocation (LDA), prefix-projected pattern prowth (Prefix-Span), alternating least squares (ALS), K-nearest neighbors (KNN), Covariance, Density-based spatial clustering of applicaitons with noise (DBSCAN), Pearson, Spearman, XGboost, Inverse Document Frequency(IDF), and SimRank. You can find the latest documentation on the project web page. This README file contains only basic setup instructions.
You can find the latest documentation, including a programming guide, on the project web page. This README file only contains basic setup instructions.


Expand All @@ -25,13 +25,13 @@ Building And Packageing

mvn clean package

(3) Obtain "boostkit-ml-core_2.11-1.3.0-spark2.3.2.jar" under the "Spark-ml-algo-lib/ml-core/target" directory.
(3) Obtain "boostkit-ml-core_2.11-2.1.0-spark2.3.2.jar" under the "Spark-ml-algo-lib/ml-core/target" directory.

Obtain "boostkit-ml-acc_2.11-1.3.0-spark2.3.2.jar" under the "Spark-ml-algo-lib/ml-accelerator/target" directory.
Obtain "boostkit-ml-acc_2.11-2.1.0-spark2.3.2.jar" under the "Spark-ml-algo-lib/ml-accelerator/target" directory.

Obtain "boostkit-xgboost4j_2.11-1.3.0.jar" under the "Spark-ml-algo-lib/ml-xgboost/jvm-packages/boostkit-xgboost4j/target" directory.
Obtain "boostkit-xgboost4j_2.11-2.1.0.jar" under the "Spark-ml-algo-lib/ml-xgboost/jvm-packages/boostkit-xgboost4j/target" directory.

Obtain "boostkit-xgboost4j-spark2.3.2_2.11-1.3.0.jar" under the "Spark-ml-algo-lib/ml-xgboost/jvm-packages/boostkit-xgboost4j-spark/target" directory.
Obtain "boostkit-xgboost4j-spark2.3.2_2.11-2.1.0.jar" under the "Spark-ml-algo-lib/ml-xgboost/jvm-packages/boostkit-xgboost4j-spark/target" directory.


Contribution Guidelines
Expand Down
4 changes: 2 additions & 2 deletions ml-accelerator/pom.xml
Original file line number Diff line number Diff line change
Expand Up @@ -2,12 +2,12 @@
<parent>
<groupId>org.apache.spark</groupId>
<artifactId>boostkit-ml</artifactId>
<version>1.3.0</version>
<version>2.1.0</version>
</parent>

<modelVersion>4.0.0</modelVersion>
<artifactId>boostkit-ml-acc_2.11</artifactId>
<version>1.3.0</version>
<version>2.1.0</version>
<name>${project.artifactId}</name>
<description>Spark ml algo accelerator</description>

Expand Down
195 changes: 195 additions & 0 deletions ml-accelerator/src/main/scala/org/apache/spark/ml/feature/IDF.scala
Original file line number Diff line number Diff line change
@@ -0,0 +1,195 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

package org.apache.spark.ml.feature

import org.apache.hadoop.fs.Path

import org.apache.spark.annotation.Since
import org.apache.spark.ml._
import org.apache.spark.ml.linalg.{Vector, VectorUDT}
import org.apache.spark.ml.param._
import org.apache.spark.ml.param.shared._
import org.apache.spark.ml.util._
import org.apache.spark.mllib.feature
import org.apache.spark.mllib.linalg.{Vector => OldVector, Vectors => OldVectors}
import org.apache.spark.mllib.util.MLUtils
import org.apache.spark.rdd.RDD
import org.apache.spark.sql._
import org.apache.spark.sql.functions._
import org.apache.spark.sql.types.StructType

/**
* Params for [[IDF]] and [[IDFModel]].
*/
private[feature] trait IDFBase extends Params with HasInputCol with HasOutputCol {

/**
* The minimum number of documents in which a term should appear.
* Default: 0
* @group param
*/
final val minDocFreq = new IntParam(
this, "minDocFreq", "minimum number of documents in which a term should appear for filtering" +
" (>= 0)", ParamValidators.gtEq(0))

setDefault(minDocFreq -> 0)

/** @group getParam */
def getMinDocFreq: Int = $(minDocFreq)

/**
* Validate and transform the input schema.
*/
protected def validateAndTransformSchema(schema: StructType): StructType = {
SchemaUtils.checkColumnType(schema, $(inputCol), new VectorUDT)
SchemaUtils.appendColumn(schema, $(outputCol), new VectorUDT)
}
}

/**
* Compute the Inverse Document Frequency (IDF) given a collection of documents.
*/
@Since("1.4.0")
final class IDF @Since("1.4.0") (@Since("1.4.0") override val uid: String)
extends Estimator[IDFModel] with IDFBase with DefaultParamsWritable {

@Since("1.4.0")
def this() = this(Identifiable.randomUID("idf"))

/** @group setParam */
@Since("1.4.0")
def setInputCol(value: String): this.type = set(inputCol, value)

/** @group setParam */
@Since("1.4.0")
def setOutputCol(value: String): this.type = set(outputCol, value)

/** @group setParam */
@Since("1.4.0")
def setMinDocFreq(value: Int): this.type = set(minDocFreq, value)

@Since("2.0.0")
override def fit(dataset: Dataset[_]): IDFModel = {
transformSchema(dataset.schema, logging = true)
val input: RDD[OldVector] = dataset.select($(inputCol)).rdd.map {
case Row(v: Vector) => OldVectors.fromML(v)
}
val idf = new feature.IDF($(minDocFreq)).fit(input)
copyValues(new IDFModel(uid, idf).setParent(this))
}

@Since("1.4.0")
override def transformSchema(schema: StructType): StructType = {
validateAndTransformSchema(schema)
}

@Since("1.4.1")
override def copy(extra: ParamMap): IDF = defaultCopy(extra)
}

@Since("1.6.0")
object IDF extends DefaultParamsReadable[IDF] {

@Since("1.6.0")
override def load(path: String): IDF = super.load(path)
}

/**
* Model fitted by [[IDF]].
*/
@Since("1.4.0")
class IDFModel private[ml] (
@Since("1.4.0") override val uid: String,
idfModel: feature.IDFModel)
extends Model[IDFModel] with IDFBase with MLWritable {

import IDFModel._

/** @group setParam */
@Since("1.4.0")
def setInputCol(value: String): this.type = set(inputCol, value)

/** @group setParam */
@Since("1.4.0")
def setOutputCol(value: String): this.type = set(outputCol, value)

@Since("2.0.0")
override def transform(dataset: Dataset[_]): DataFrame = {
transformSchema(dataset.schema, logging = true)
// TODO: Make the idfModel.transform natively in ml framework to avoid extra conversion.
val idf = udf { vec: Vector => idfModel.transform(OldVectors.fromML(vec)).asML }
dataset.withColumn($(outputCol), idf(col($(inputCol))))
}

@Since("1.4.0")
override def transformSchema(schema: StructType): StructType = {
validateAndTransformSchema(schema)
}

@Since("1.4.1")
override def copy(extra: ParamMap): IDFModel = {
val copied = new IDFModel(uid, idfModel)
copyValues(copied, extra).setParent(parent)
}

/** Returns the IDF vector. */
@Since("2.0.0")
def idf: Vector = idfModel.idf.asML

@Since("1.6.0")
override def write: MLWriter = new IDFModelWriter(this)
}

@Since("1.6.0")
object IDFModel extends MLReadable[IDFModel] {

private[IDFModel] class IDFModelWriter(instance: IDFModel) extends MLWriter {

private case class Data(idf: Vector)

override protected def saveImpl(path: String): Unit = {
DefaultParamsWriter.saveMetadata(instance, path, sc)
val data = Data(instance.idf)
val dataPath = new Path(path, "data").toString
sparkSession.createDataFrame(Seq(data)).repartition(1).write.parquet(dataPath)
}
}

private class IDFModelReader extends MLReader[IDFModel] {

private val className = classOf[IDFModel].getName

override def load(path: String): IDFModel = {
val metadata = DefaultParamsReader.loadMetadata(path, sc, className)
val dataPath = new Path(path, "data").toString
val data = sparkSession.read.parquet(dataPath)
val Row(idf: Vector) = MLUtils.convertVectorColumnsToML(data, "idf")
.select("idf")
.head()
val model = new IDFModel(metadata.uid, new feature.IDFModel(OldVectors.fromML(idf)))
DefaultParamsReader.getAndSetParams(model, metadata)
model
}
}

@Since("1.6.0")
override def read: MLReader[IDFModel] = new IDFModelReader

@Since("1.6.0")
override def load(path: String): IDFModel = super.load(path)
}
Original file line number Diff line number Diff line change
Expand Up @@ -26,7 +26,7 @@ import org.apache.spark.broadcast.Broadcast
import org.apache.spark.mllib.linalg.BLAS.{axpy, scal}
import org.apache.spark.mllib.linalg.Vectors
import org.apache.spark.rdd.RDD

import org.apache.spark.sql.SparkSession

object KMACCm {
val DEFAULT_SAMPLE_RATE = 0.05
Expand Down Expand Up @@ -85,9 +85,23 @@ object KMACCm {
throw new Exception("'spark.boostkit.Kmeans.sampleRate' value is invalid")
}

val DEFAULT_PAR_LEVEL = 100
var customParLevel = DEFAULT_PAR_LEVEL
try{
customParLevel = SparkSession.builder().getOrCreate()
.sparkContext.getConf.getInt("spark.boostkit.Kmeans.parLevel",
DEFAULT_PAR_LEVEL)
if (customParLevel < 1) {
throw new Exception
}
}
catch {
case x: Exception =>
throw new Exception("'spark.boostkit.Kmeans.parLevel' value is invalid")
}

while (iteration < maxIterations && !converged) {
val s = Array.fill(cl * cl)(0.0)
KmeansUtil.generateDisMatrix(centers, s)
val s = KmeansUtil.generateDisMatrix(centers, customParLevel)
val bcCenters = sc.broadcast(centers)
val bcs = sc.broadcast(s)

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -418,7 +418,7 @@ class KMeans private(
bcCenters.destroy(blocking = false)

val myWeights = distinctCenters.indices.map(countMap.getOrElse(_, 0L).toDouble).toArray
LocalKMeans.kMeansPlusPlus(0, distinctCenters.toArray, myWeights, k, 30)
LocalKMeansX.kMeansPlusPlus(0, distinctCenters.toArray, myWeights, k, 30)
}
}
}
Expand Down Expand Up @@ -614,5 +614,3 @@ object KMeans {
}
}
}


Loading

0 comments on commit 3d90485

Please sign in to comment.