-
Notifications
You must be signed in to change notification settings - Fork 17
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #37 from wyy566/master
updata ml algorithm lib
- Loading branch information
Showing
30 changed files
with
938 additions
and
51 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
195 changes: 195 additions & 0 deletions
195
ml-accelerator/src/main/scala/org/apache/spark/ml/feature/IDF.scala
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,195 @@ | ||
/* | ||
* Licensed to the Apache Software Foundation (ASF) under one or more | ||
* contributor license agreements. See the NOTICE file distributed with | ||
* this work for additional information regarding copyright ownership. | ||
* The ASF licenses this file to You under the Apache License, Version 2.0 | ||
* (the "License"); you may not use this file except in compliance with | ||
* the License. You may obtain a copy of the License at | ||
* | ||
* http://www.apache.org/licenses/LICENSE-2.0 | ||
* | ||
* Unless required by applicable law or agreed to in writing, software | ||
* distributed under the License is distributed on an "AS IS" BASIS, | ||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
* See the License for the specific language governing permissions and | ||
* limitations under the License. | ||
*/ | ||
|
||
package org.apache.spark.ml.feature | ||
|
||
import org.apache.hadoop.fs.Path | ||
|
||
import org.apache.spark.annotation.Since | ||
import org.apache.spark.ml._ | ||
import org.apache.spark.ml.linalg.{Vector, VectorUDT} | ||
import org.apache.spark.ml.param._ | ||
import org.apache.spark.ml.param.shared._ | ||
import org.apache.spark.ml.util._ | ||
import org.apache.spark.mllib.feature | ||
import org.apache.spark.mllib.linalg.{Vector => OldVector, Vectors => OldVectors} | ||
import org.apache.spark.mllib.util.MLUtils | ||
import org.apache.spark.rdd.RDD | ||
import org.apache.spark.sql._ | ||
import org.apache.spark.sql.functions._ | ||
import org.apache.spark.sql.types.StructType | ||
|
||
/** | ||
* Params for [[IDF]] and [[IDFModel]]. | ||
*/ | ||
private[feature] trait IDFBase extends Params with HasInputCol with HasOutputCol { | ||
|
||
/** | ||
* The minimum number of documents in which a term should appear. | ||
* Default: 0 | ||
* @group param | ||
*/ | ||
final val minDocFreq = new IntParam( | ||
this, "minDocFreq", "minimum number of documents in which a term should appear for filtering" + | ||
" (>= 0)", ParamValidators.gtEq(0)) | ||
|
||
setDefault(minDocFreq -> 0) | ||
|
||
/** @group getParam */ | ||
def getMinDocFreq: Int = $(minDocFreq) | ||
|
||
/** | ||
* Validate and transform the input schema. | ||
*/ | ||
protected def validateAndTransformSchema(schema: StructType): StructType = { | ||
SchemaUtils.checkColumnType(schema, $(inputCol), new VectorUDT) | ||
SchemaUtils.appendColumn(schema, $(outputCol), new VectorUDT) | ||
} | ||
} | ||
|
||
/** | ||
* Compute the Inverse Document Frequency (IDF) given a collection of documents. | ||
*/ | ||
@Since("1.4.0") | ||
final class IDF @Since("1.4.0") (@Since("1.4.0") override val uid: String) | ||
extends Estimator[IDFModel] with IDFBase with DefaultParamsWritable { | ||
|
||
@Since("1.4.0") | ||
def this() = this(Identifiable.randomUID("idf")) | ||
|
||
/** @group setParam */ | ||
@Since("1.4.0") | ||
def setInputCol(value: String): this.type = set(inputCol, value) | ||
|
||
/** @group setParam */ | ||
@Since("1.4.0") | ||
def setOutputCol(value: String): this.type = set(outputCol, value) | ||
|
||
/** @group setParam */ | ||
@Since("1.4.0") | ||
def setMinDocFreq(value: Int): this.type = set(minDocFreq, value) | ||
|
||
@Since("2.0.0") | ||
override def fit(dataset: Dataset[_]): IDFModel = { | ||
transformSchema(dataset.schema, logging = true) | ||
val input: RDD[OldVector] = dataset.select($(inputCol)).rdd.map { | ||
case Row(v: Vector) => OldVectors.fromML(v) | ||
} | ||
val idf = new feature.IDF($(minDocFreq)).fit(input) | ||
copyValues(new IDFModel(uid, idf).setParent(this)) | ||
} | ||
|
||
@Since("1.4.0") | ||
override def transformSchema(schema: StructType): StructType = { | ||
validateAndTransformSchema(schema) | ||
} | ||
|
||
@Since("1.4.1") | ||
override def copy(extra: ParamMap): IDF = defaultCopy(extra) | ||
} | ||
|
||
@Since("1.6.0") | ||
object IDF extends DefaultParamsReadable[IDF] { | ||
|
||
@Since("1.6.0") | ||
override def load(path: String): IDF = super.load(path) | ||
} | ||
|
||
/** | ||
* Model fitted by [[IDF]]. | ||
*/ | ||
@Since("1.4.0") | ||
class IDFModel private[ml] ( | ||
@Since("1.4.0") override val uid: String, | ||
idfModel: feature.IDFModel) | ||
extends Model[IDFModel] with IDFBase with MLWritable { | ||
|
||
import IDFModel._ | ||
|
||
/** @group setParam */ | ||
@Since("1.4.0") | ||
def setInputCol(value: String): this.type = set(inputCol, value) | ||
|
||
/** @group setParam */ | ||
@Since("1.4.0") | ||
def setOutputCol(value: String): this.type = set(outputCol, value) | ||
|
||
@Since("2.0.0") | ||
override def transform(dataset: Dataset[_]): DataFrame = { | ||
transformSchema(dataset.schema, logging = true) | ||
// TODO: Make the idfModel.transform natively in ml framework to avoid extra conversion. | ||
val idf = udf { vec: Vector => idfModel.transform(OldVectors.fromML(vec)).asML } | ||
dataset.withColumn($(outputCol), idf(col($(inputCol)))) | ||
} | ||
|
||
@Since("1.4.0") | ||
override def transformSchema(schema: StructType): StructType = { | ||
validateAndTransformSchema(schema) | ||
} | ||
|
||
@Since("1.4.1") | ||
override def copy(extra: ParamMap): IDFModel = { | ||
val copied = new IDFModel(uid, idfModel) | ||
copyValues(copied, extra).setParent(parent) | ||
} | ||
|
||
/** Returns the IDF vector. */ | ||
@Since("2.0.0") | ||
def idf: Vector = idfModel.idf.asML | ||
|
||
@Since("1.6.0") | ||
override def write: MLWriter = new IDFModelWriter(this) | ||
} | ||
|
||
@Since("1.6.0") | ||
object IDFModel extends MLReadable[IDFModel] { | ||
|
||
private[IDFModel] class IDFModelWriter(instance: IDFModel) extends MLWriter { | ||
|
||
private case class Data(idf: Vector) | ||
|
||
override protected def saveImpl(path: String): Unit = { | ||
DefaultParamsWriter.saveMetadata(instance, path, sc) | ||
val data = Data(instance.idf) | ||
val dataPath = new Path(path, "data").toString | ||
sparkSession.createDataFrame(Seq(data)).repartition(1).write.parquet(dataPath) | ||
} | ||
} | ||
|
||
private class IDFModelReader extends MLReader[IDFModel] { | ||
|
||
private val className = classOf[IDFModel].getName | ||
|
||
override def load(path: String): IDFModel = { | ||
val metadata = DefaultParamsReader.loadMetadata(path, sc, className) | ||
val dataPath = new Path(path, "data").toString | ||
val data = sparkSession.read.parquet(dataPath) | ||
val Row(idf: Vector) = MLUtils.convertVectorColumnsToML(data, "idf") | ||
.select("idf") | ||
.head() | ||
val model = new IDFModel(metadata.uid, new feature.IDFModel(OldVectors.fromML(idf))) | ||
DefaultParamsReader.getAndSetParams(model, metadata) | ||
model | ||
} | ||
} | ||
|
||
@Since("1.6.0") | ||
override def read: MLReader[IDFModel] = new IDFModelReader | ||
|
||
@Since("1.6.0") | ||
override def load(path: String): IDFModel = super.load(path) | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.