-
Notifications
You must be signed in to change notification settings - Fork 46
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
add an unseen task processing example in cityscape dataset; remove RE…
…ADME_ospp.md.
- Loading branch information
Showing
36 changed files
with
2,965 additions
and
3 deletions.
There are no files selected for viewing
This file was deleted.
Oops, something went wrong.
1 change: 1 addition & 0 deletions
1
examples/cityscapes/unseen_task_processing/GANwithSelfTaughtLearning/GAN/__init__.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1 @@ | ||
from . import train |
76 changes: 76 additions & 0 deletions
76
examples/cityscapes/unseen_task_processing/GANwithSelfTaughtLearning/GAN/diffaug.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,76 @@ | ||
# Differentiable Augmentation for Data-Efficient GAN Training | ||
# Shengyu Zhao, Zhijian Liu, Ji Lin, Jun-Yan Zhu, and Song Han | ||
# https://arxiv.org/pdf/2006.10738 | ||
|
||
import torch | ||
import torch.nn.functional as F | ||
|
||
|
||
def DiffAugment(x, policy='', channels_first=True): | ||
if policy: | ||
if not channels_first: | ||
x = x.permute(0, 3, 1, 2) | ||
for p in policy.split(','): | ||
for f in AUGMENT_FNS[p]: | ||
x = f(x) | ||
if not channels_first: | ||
x = x.permute(0, 2, 3, 1) | ||
x = x.contiguous() | ||
return x | ||
|
||
|
||
def rand_brightness(x): | ||
x = x + (torch.rand(x.size(0), 1, 1, 1, dtype=x.dtype, device=x.device) - 0.5) | ||
return x | ||
|
||
|
||
def rand_saturation(x): | ||
x_mean = x.mean(dim=1, keepdim=True) | ||
x = (x - x_mean) * (torch.rand(x.size(0), 1, 1, 1, dtype=x.dtype, device=x.device) * 2) + x_mean | ||
return x | ||
|
||
|
||
def rand_contrast(x): | ||
x_mean = x.mean(dim=[1, 2, 3], keepdim=True) | ||
x = (x - x_mean) * (torch.rand(x.size(0), 1, 1, 1, dtype=x.dtype, device=x.device) + 0.5) + x_mean | ||
return x | ||
|
||
|
||
def rand_translation(x, ratio=0.125): | ||
shift_x, shift_y = int(x.size(2) * ratio + 0.5), int(x.size(3) * ratio + 0.5) | ||
translation_x = torch.randint(-shift_x, shift_x + 1, size=[x.size(0), 1, 1], device=x.device) | ||
translation_y = torch.randint(-shift_y, shift_y + 1, size=[x.size(0), 1, 1], device=x.device) | ||
grid_batch, grid_x, grid_y = torch.meshgrid( | ||
torch.arange(x.size(0), dtype=torch.long, device=x.device), | ||
torch.arange(x.size(2), dtype=torch.long, device=x.device), | ||
torch.arange(x.size(3), dtype=torch.long, device=x.device), | ||
) | ||
grid_x = torch.clamp(grid_x + translation_x + 1, 0, x.size(2) + 1) | ||
grid_y = torch.clamp(grid_y + translation_y + 1, 0, x.size(3) + 1) | ||
x_pad = F.pad(x, [1, 1, 1, 1, 0, 0, 0, 0]) | ||
x = x_pad.permute(0, 2, 3, 1).contiguous()[grid_batch, grid_x, grid_y].permute(0, 3, 1, 2) | ||
return x | ||
|
||
|
||
def rand_cutout(x, ratio=0.5): | ||
cutout_size = int(x.size(2) * ratio + 0.5), int(x.size(3) * ratio + 0.5) | ||
offset_x = torch.randint(0, x.size(2) + (1 - cutout_size[0] % 2), size=[x.size(0), 1, 1], device=x.device) | ||
offset_y = torch.randint(0, x.size(3) + (1 - cutout_size[1] % 2), size=[x.size(0), 1, 1], device=x.device) | ||
grid_batch, grid_x, grid_y = torch.meshgrid( | ||
torch.arange(x.size(0), dtype=torch.long, device=x.device), | ||
torch.arange(cutout_size[0], dtype=torch.long, device=x.device), | ||
torch.arange(cutout_size[1], dtype=torch.long, device=x.device), | ||
) | ||
grid_x = torch.clamp(grid_x + offset_x - cutout_size[0] // 2, min=0, max=x.size(2) - 1) | ||
grid_y = torch.clamp(grid_y + offset_y - cutout_size[1] // 2, min=0, max=x.size(3) - 1) | ||
mask = torch.ones(x.size(0), x.size(2), x.size(3), dtype=x.dtype, device=x.device) | ||
mask[grid_batch, grid_x, grid_y] = 0 | ||
x = x * mask.unsqueeze(1) | ||
return x | ||
|
||
|
||
AUGMENT_FNS = { | ||
'color': [rand_brightness, rand_saturation, rand_contrast], | ||
'translation': [rand_translation], | ||
'cutout': [rand_cutout], | ||
} |
43 changes: 43 additions & 0 deletions
43
...les/cityscapes/unseen_task_processing/GANwithSelfTaughtLearning/GAN/generate_fake_imgs.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,43 @@ | ||
import torch | ||
|
||
from models import Generator, weights_init | ||
|
||
import matplotlib.pyplot as plt | ||
|
||
import os | ||
|
||
from collections import OrderedDict | ||
|
||
import numpy as np | ||
|
||
from skimage import io | ||
|
||
|
||
device = 'cuda' | ||
|
||
ngf = 64 | ||
nz = 256 | ||
im_size = 1024 | ||
netG = Generator(ngf=ngf, nz=nz, im_size=im_size).to(device) | ||
weights_init(netG) | ||
weights = torch.load(os.getcwd() + '/train_results/test1/models/50000.pth') | ||
netG_weights = OrderedDict() | ||
for name, weight in weights['g'].items(): | ||
name = name.split('.')[1:] | ||
name = '.'.join(name) | ||
netG_weights[name] = weight | ||
netG.load_state_dict(netG_weights) | ||
current_batch_size = 1 | ||
|
||
|
||
index = 1 | ||
while index <= 3000: | ||
noise = torch.Tensor(current_batch_size, nz).normal_(0, 1).to(device) | ||
fake_images = netG(noise)[0] | ||
for fake_image in fake_images: | ||
fake_image = fake_image.detach().cpu().numpy().transpose(1, 2, 0) | ||
fake_image = fake_image * np.array([0.5, 0.5, 0.5]) | ||
fake_image = fake_image + np.array([0.5, 0.5, 0.5]) | ||
fake_image = (fake_image * 255).astype(np.uint8) | ||
io.imsave('../data/fake_imgs1/' + str(index) + '.png', fake_image) | ||
index += 1 |
182 changes: 182 additions & 0 deletions
182
examples/cityscapes/unseen_task_processing/GANwithSelfTaughtLearning/GAN/lpips/__init__.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,182 @@ | ||
|
||
from __future__ import absolute_import | ||
from __future__ import division | ||
from __future__ import print_function | ||
|
||
import numpy as np | ||
import skimage | ||
import torch | ||
from torch.autograd import Variable | ||
|
||
from lpips import dist_model | ||
|
||
|
||
from skimage.metrics import structural_similarity as compare_ssim | ||
|
||
|
||
class PerceptualLoss(torch.nn.Module): | ||
# VGG using our perceptually-learned weights (LPIPS metric) | ||
def __init__(self, model='net-lin', net='alex', colorspace='rgb', spatial=False, use_gpu=True, gpu_ids=[0]): | ||
# def __init__(self, model='net', net='vgg', use_gpu=True): # "default" way of using VGG as a perceptual loss | ||
super(PerceptualLoss, self).__init__() | ||
print('Setting up Perceptual loss...') | ||
self.use_gpu = use_gpu | ||
self.spatial = spatial | ||
self.gpu_ids = gpu_ids | ||
self.model = dist_model.DistModel() | ||
self.model.initialize(model=model, net=net, use_gpu=use_gpu, | ||
colorspace=colorspace, spatial=self.spatial, gpu_ids=gpu_ids) | ||
print('...[%s] initialized' % self.model.name()) | ||
print('...Done') | ||
|
||
def forward(self, pred, target, normalize=False): | ||
""" | ||
Pred and target are Variables. | ||
If normalize is True, assumes the images are between [0,1] and then scales them between [-1,+1] | ||
If normalize is False, assumes the images are already between [-1,+1] | ||
Inputs pred and target are Nx3xHxW | ||
Output pytorch Variable N long | ||
""" | ||
|
||
if normalize: | ||
target = 2 * target - 1 | ||
pred = 2 * pred - 1 | ||
|
||
return self.model.forward(target, pred) | ||
|
||
|
||
def normalize_tensor(in_feat, eps=1e-10): | ||
norm_factor = torch.sqrt(torch.sum(in_feat**2, dim=1, keepdim=True)) | ||
return in_feat/(norm_factor+eps) | ||
|
||
|
||
def l2(p0, p1, range=255.): | ||
return .5*np.mean((p0 / range - p1 / range)**2) | ||
|
||
|
||
def psnr(p0, p1, peak=255.): | ||
return 10*np.log10(peak**2/np.mean((1.*p0-1.*p1)**2)) | ||
|
||
|
||
def dssim(p0, p1, range=255.): | ||
return (1 - compare_ssim(p0, p1, data_range=range, multichannel=True)) / 2. | ||
|
||
|
||
def rgb2lab(in_img, mean_cent=False): | ||
from skimage import color | ||
img_lab = color.rgb2lab(in_img) | ||
if(mean_cent): | ||
img_lab[:, :, 0] = img_lab[:, :, 0]-50 | ||
return img_lab | ||
|
||
|
||
def tensor2np(tensor_obj): | ||
# change dimension of a tensor object into a numpy array | ||
return tensor_obj[0].cpu().float().numpy().transpose((1, 2, 0)) | ||
|
||
|
||
def np2tensor(np_obj): | ||
# change dimenion of np array into tensor array | ||
return torch.Tensor(np_obj[:, :, :, np.newaxis].transpose((3, 2, 0, 1))) | ||
|
||
|
||
def tensor2tensorlab(image_tensor, to_norm=True, mc_only=False): | ||
# image tensor to lab tensor | ||
from skimage import color | ||
|
||
img = tensor2im(image_tensor) | ||
img_lab = color.rgb2lab(img) | ||
if(mc_only): | ||
img_lab[:, :, 0] = img_lab[:, :, 0]-50 | ||
if(to_norm and not mc_only): | ||
img_lab[:, :, 0] = img_lab[:, :, 0]-50 | ||
img_lab = img_lab/100. | ||
|
||
return np2tensor(img_lab) | ||
|
||
|
||
def tensorlab2tensor(lab_tensor, return_inbnd=False): | ||
from skimage import color | ||
import warnings | ||
warnings.filterwarnings("ignore") | ||
|
||
lab = tensor2np(lab_tensor)*100. | ||
lab[:, :, 0] = lab[:, :, 0]+50 | ||
|
||
rgb_back = 255.*np.clip(color.lab2rgb(lab.astype('float')), 0, 1) | ||
if(return_inbnd): | ||
# convert back to lab, see if we match | ||
lab_back = color.rgb2lab(rgb_back.astype('uint8')) | ||
mask = 1.*np.isclose(lab_back, lab, atol=2.) | ||
mask = np2tensor(np.prod(mask, axis=2)[:, :, np.newaxis]) | ||
return (im2tensor(rgb_back), mask) | ||
else: | ||
return im2tensor(rgb_back) | ||
|
||
|
||
def rgb2lab(input): | ||
from skimage import color | ||
return color.rgb2lab(input / 255.) | ||
|
||
|
||
def tensor2im(image_tensor, imtype=np.uint8, cent=1., factor=255./2.): | ||
image_numpy = image_tensor[0].cpu().float().numpy() | ||
image_numpy = (np.transpose(image_numpy, (1, 2, 0)) + cent) * factor | ||
return image_numpy.astype(imtype) | ||
|
||
|
||
def im2tensor(image, imtype=np.uint8, cent=1., factor=255./2.): | ||
return torch.Tensor((image / factor - cent) | ||
[:, :, :, np.newaxis].transpose((3, 2, 0, 1))) | ||
|
||
|
||
def tensor2vec(vector_tensor): | ||
return vector_tensor.data.cpu().numpy()[:, :, 0, 0] | ||
|
||
|
||
def voc_ap(rec, prec, use_07_metric=False): | ||
""" ap = voc_ap(rec, prec, [use_07_metric]) | ||
Compute VOC AP given precision and recall. | ||
If use_07_metric is true, uses the | ||
VOC 07 11 point method (default:False). | ||
""" | ||
if use_07_metric: | ||
# 11 point metric | ||
ap = 0. | ||
for t in np.arange(0., 1.1, 0.1): | ||
if np.sum(rec >= t) == 0: | ||
p = 0 | ||
else: | ||
p = np.max(prec[rec >= t]) | ||
ap = ap + p / 11. | ||
else: | ||
# correct AP calculation | ||
# first append sentinel values at the end | ||
mrec = np.concatenate(([0.], rec, [1.])) | ||
mpre = np.concatenate(([0.], prec, [0.])) | ||
|
||
# compute the precision envelope | ||
for i in range(mpre.size - 1, 0, -1): | ||
mpre[i - 1] = np.maximum(mpre[i - 1], mpre[i]) | ||
|
||
# to calculate area under PR curve, look for points | ||
# where X axis (recall) changes value | ||
i = np.where(mrec[1:] != mrec[:-1])[0] | ||
|
||
# and sum (\Delta recall) * prec | ||
ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1]) | ||
return ap | ||
|
||
|
||
def tensor2im(image_tensor, imtype=np.uint8, cent=1., factor=255./2.): | ||
# def tensor2im(image_tensor, imtype=np.uint8, cent=1., factor=1.): | ||
image_numpy = image_tensor[0].cpu().float().numpy() | ||
image_numpy = (np.transpose(image_numpy, (1, 2, 0)) + cent) * factor | ||
return image_numpy.astype(imtype) | ||
|
||
|
||
def im2tensor(image, imtype=np.uint8, cent=1., factor=255./2.): | ||
# def im2tensor(image, imtype=np.uint8, cent=1., factor=1.): | ||
return torch.Tensor((image / factor - cent) | ||
[:, :, :, np.newaxis].transpose((3, 2, 0, 1))) |
58 changes: 58 additions & 0 deletions
58
examples/cityscapes/unseen_task_processing/GANwithSelfTaughtLearning/GAN/lpips/base_model.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,58 @@ | ||
import os | ||
import torch | ||
from torch.autograd import Variable | ||
from pdb import set_trace as st | ||
from IPython import embed | ||
|
||
class BaseModel(): | ||
def __init__(self): | ||
pass; | ||
|
||
def name(self): | ||
return 'BaseModel' | ||
|
||
def initialize(self, use_gpu=True, gpu_ids=[0]): | ||
self.use_gpu = use_gpu | ||
self.gpu_ids = gpu_ids | ||
|
||
def forward(self): | ||
pass | ||
|
||
def get_image_paths(self): | ||
pass | ||
|
||
def optimize_parameters(self): | ||
pass | ||
|
||
def get_current_visuals(self): | ||
return self.input | ||
|
||
def get_current_errors(self): | ||
return {} | ||
|
||
def save(self, label): | ||
pass | ||
|
||
# helper saving function that can be used by subclasses | ||
def save_network(self, network, path, network_label, epoch_label): | ||
save_filename = '%s_net_%s.pth' % (epoch_label, network_label) | ||
save_path = os.path.join(path, save_filename) | ||
torch.save(network.state_dict(), save_path) | ||
|
||
# helper loading function that can be used by subclasses | ||
def load_network(self, network, network_label, epoch_label): | ||
save_filename = '%s_net_%s.pth' % (epoch_label, network_label) | ||
save_path = os.path.join(self.save_dir, save_filename) | ||
print('Loading network from %s'%save_path) | ||
network.load_state_dict(torch.load(save_path)) | ||
|
||
def update_learning_rate(): | ||
pass | ||
|
||
def get_image_paths(self): | ||
return self.image_paths | ||
|
||
def save_done(self, flag=False): | ||
np.save(os.path.join(self.save_dir, 'done_flag'),flag) | ||
np.savetxt(os.path.join(self.save_dir, 'done_flag'),[flag,],fmt='%i') | ||
|
Oops, something went wrong.