Skip to content

Commit

Permalink
add an unseen task processing example in cityscape dataset; remove RE…
Browse files Browse the repository at this point in the history
…ADME_ospp.md.
  • Loading branch information
nailtu30 committed Dec 25, 2023
1 parent 7e3b191 commit 79ff7cc
Show file tree
Hide file tree
Showing 36 changed files with 2,965 additions and 3 deletions.
3 changes: 0 additions & 3 deletions README_ospp.md

This file was deleted.

Original file line number Diff line number Diff line change
@@ -0,0 +1 @@
from . import train
Original file line number Diff line number Diff line change
@@ -0,0 +1,76 @@
# Differentiable Augmentation for Data-Efficient GAN Training
# Shengyu Zhao, Zhijian Liu, Ji Lin, Jun-Yan Zhu, and Song Han
# https://arxiv.org/pdf/2006.10738

import torch
import torch.nn.functional as F


def DiffAugment(x, policy='', channels_first=True):
if policy:
if not channels_first:
x = x.permute(0, 3, 1, 2)
for p in policy.split(','):
for f in AUGMENT_FNS[p]:
x = f(x)
if not channels_first:
x = x.permute(0, 2, 3, 1)
x = x.contiguous()
return x


def rand_brightness(x):
x = x + (torch.rand(x.size(0), 1, 1, 1, dtype=x.dtype, device=x.device) - 0.5)
return x


def rand_saturation(x):
x_mean = x.mean(dim=1, keepdim=True)
x = (x - x_mean) * (torch.rand(x.size(0), 1, 1, 1, dtype=x.dtype, device=x.device) * 2) + x_mean
return x


def rand_contrast(x):
x_mean = x.mean(dim=[1, 2, 3], keepdim=True)
x = (x - x_mean) * (torch.rand(x.size(0), 1, 1, 1, dtype=x.dtype, device=x.device) + 0.5) + x_mean
return x


def rand_translation(x, ratio=0.125):
shift_x, shift_y = int(x.size(2) * ratio + 0.5), int(x.size(3) * ratio + 0.5)
translation_x = torch.randint(-shift_x, shift_x + 1, size=[x.size(0), 1, 1], device=x.device)
translation_y = torch.randint(-shift_y, shift_y + 1, size=[x.size(0), 1, 1], device=x.device)
grid_batch, grid_x, grid_y = torch.meshgrid(
torch.arange(x.size(0), dtype=torch.long, device=x.device),
torch.arange(x.size(2), dtype=torch.long, device=x.device),
torch.arange(x.size(3), dtype=torch.long, device=x.device),
)
grid_x = torch.clamp(grid_x + translation_x + 1, 0, x.size(2) + 1)
grid_y = torch.clamp(grid_y + translation_y + 1, 0, x.size(3) + 1)
x_pad = F.pad(x, [1, 1, 1, 1, 0, 0, 0, 0])
x = x_pad.permute(0, 2, 3, 1).contiguous()[grid_batch, grid_x, grid_y].permute(0, 3, 1, 2)
return x


def rand_cutout(x, ratio=0.5):
cutout_size = int(x.size(2) * ratio + 0.5), int(x.size(3) * ratio + 0.5)
offset_x = torch.randint(0, x.size(2) + (1 - cutout_size[0] % 2), size=[x.size(0), 1, 1], device=x.device)
offset_y = torch.randint(0, x.size(3) + (1 - cutout_size[1] % 2), size=[x.size(0), 1, 1], device=x.device)
grid_batch, grid_x, grid_y = torch.meshgrid(
torch.arange(x.size(0), dtype=torch.long, device=x.device),
torch.arange(cutout_size[0], dtype=torch.long, device=x.device),
torch.arange(cutout_size[1], dtype=torch.long, device=x.device),
)
grid_x = torch.clamp(grid_x + offset_x - cutout_size[0] // 2, min=0, max=x.size(2) - 1)
grid_y = torch.clamp(grid_y + offset_y - cutout_size[1] // 2, min=0, max=x.size(3) - 1)
mask = torch.ones(x.size(0), x.size(2), x.size(3), dtype=x.dtype, device=x.device)
mask[grid_batch, grid_x, grid_y] = 0
x = x * mask.unsqueeze(1)
return x


AUGMENT_FNS = {
'color': [rand_brightness, rand_saturation, rand_contrast],
'translation': [rand_translation],
'cutout': [rand_cutout],
}
Original file line number Diff line number Diff line change
@@ -0,0 +1,43 @@
import torch

from models import Generator, weights_init

import matplotlib.pyplot as plt

import os

from collections import OrderedDict

import numpy as np

from skimage import io


device = 'cuda'

ngf = 64
nz = 256
im_size = 1024
netG = Generator(ngf=ngf, nz=nz, im_size=im_size).to(device)
weights_init(netG)
weights = torch.load(os.getcwd() + '/train_results/test1/models/50000.pth')
netG_weights = OrderedDict()
for name, weight in weights['g'].items():
name = name.split('.')[1:]
name = '.'.join(name)
netG_weights[name] = weight
netG.load_state_dict(netG_weights)
current_batch_size = 1


index = 1
while index <= 3000:
noise = torch.Tensor(current_batch_size, nz).normal_(0, 1).to(device)
fake_images = netG(noise)[0]
for fake_image in fake_images:
fake_image = fake_image.detach().cpu().numpy().transpose(1, 2, 0)
fake_image = fake_image * np.array([0.5, 0.5, 0.5])
fake_image = fake_image + np.array([0.5, 0.5, 0.5])
fake_image = (fake_image * 255).astype(np.uint8)
io.imsave('../data/fake_imgs1/' + str(index) + '.png', fake_image)
index += 1
Original file line number Diff line number Diff line change
@@ -0,0 +1,182 @@

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import numpy as np
import skimage
import torch
from torch.autograd import Variable

from lpips import dist_model


from skimage.metrics import structural_similarity as compare_ssim


class PerceptualLoss(torch.nn.Module):
# VGG using our perceptually-learned weights (LPIPS metric)
def __init__(self, model='net-lin', net='alex', colorspace='rgb', spatial=False, use_gpu=True, gpu_ids=[0]):
# def __init__(self, model='net', net='vgg', use_gpu=True): # "default" way of using VGG as a perceptual loss
super(PerceptualLoss, self).__init__()
print('Setting up Perceptual loss...')
self.use_gpu = use_gpu
self.spatial = spatial
self.gpu_ids = gpu_ids
self.model = dist_model.DistModel()
self.model.initialize(model=model, net=net, use_gpu=use_gpu,
colorspace=colorspace, spatial=self.spatial, gpu_ids=gpu_ids)
print('...[%s] initialized' % self.model.name())
print('...Done')

def forward(self, pred, target, normalize=False):
"""
Pred and target are Variables.
If normalize is True, assumes the images are between [0,1] and then scales them between [-1,+1]
If normalize is False, assumes the images are already between [-1,+1]
Inputs pred and target are Nx3xHxW
Output pytorch Variable N long
"""

if normalize:
target = 2 * target - 1
pred = 2 * pred - 1

return self.model.forward(target, pred)


def normalize_tensor(in_feat, eps=1e-10):
norm_factor = torch.sqrt(torch.sum(in_feat**2, dim=1, keepdim=True))
return in_feat/(norm_factor+eps)


def l2(p0, p1, range=255.):
return .5*np.mean((p0 / range - p1 / range)**2)


def psnr(p0, p1, peak=255.):
return 10*np.log10(peak**2/np.mean((1.*p0-1.*p1)**2))


def dssim(p0, p1, range=255.):
return (1 - compare_ssim(p0, p1, data_range=range, multichannel=True)) / 2.


def rgb2lab(in_img, mean_cent=False):
from skimage import color
img_lab = color.rgb2lab(in_img)
if(mean_cent):
img_lab[:, :, 0] = img_lab[:, :, 0]-50
return img_lab


def tensor2np(tensor_obj):
# change dimension of a tensor object into a numpy array
return tensor_obj[0].cpu().float().numpy().transpose((1, 2, 0))


def np2tensor(np_obj):
# change dimenion of np array into tensor array
return torch.Tensor(np_obj[:, :, :, np.newaxis].transpose((3, 2, 0, 1)))


def tensor2tensorlab(image_tensor, to_norm=True, mc_only=False):
# image tensor to lab tensor
from skimage import color

img = tensor2im(image_tensor)
img_lab = color.rgb2lab(img)
if(mc_only):
img_lab[:, :, 0] = img_lab[:, :, 0]-50
if(to_norm and not mc_only):
img_lab[:, :, 0] = img_lab[:, :, 0]-50
img_lab = img_lab/100.

return np2tensor(img_lab)


def tensorlab2tensor(lab_tensor, return_inbnd=False):
from skimage import color
import warnings
warnings.filterwarnings("ignore")

lab = tensor2np(lab_tensor)*100.
lab[:, :, 0] = lab[:, :, 0]+50

rgb_back = 255.*np.clip(color.lab2rgb(lab.astype('float')), 0, 1)
if(return_inbnd):
# convert back to lab, see if we match
lab_back = color.rgb2lab(rgb_back.astype('uint8'))
mask = 1.*np.isclose(lab_back, lab, atol=2.)
mask = np2tensor(np.prod(mask, axis=2)[:, :, np.newaxis])
return (im2tensor(rgb_back), mask)
else:
return im2tensor(rgb_back)


def rgb2lab(input):
from skimage import color
return color.rgb2lab(input / 255.)


def tensor2im(image_tensor, imtype=np.uint8, cent=1., factor=255./2.):
image_numpy = image_tensor[0].cpu().float().numpy()
image_numpy = (np.transpose(image_numpy, (1, 2, 0)) + cent) * factor
return image_numpy.astype(imtype)


def im2tensor(image, imtype=np.uint8, cent=1., factor=255./2.):
return torch.Tensor((image / factor - cent)
[:, :, :, np.newaxis].transpose((3, 2, 0, 1)))


def tensor2vec(vector_tensor):
return vector_tensor.data.cpu().numpy()[:, :, 0, 0]


def voc_ap(rec, prec, use_07_metric=False):
""" ap = voc_ap(rec, prec, [use_07_metric])
Compute VOC AP given precision and recall.
If use_07_metric is true, uses the
VOC 07 11 point method (default:False).
"""
if use_07_metric:
# 11 point metric
ap = 0.
for t in np.arange(0., 1.1, 0.1):
if np.sum(rec >= t) == 0:
p = 0
else:
p = np.max(prec[rec >= t])
ap = ap + p / 11.
else:
# correct AP calculation
# first append sentinel values at the end
mrec = np.concatenate(([0.], rec, [1.]))
mpre = np.concatenate(([0.], prec, [0.]))

# compute the precision envelope
for i in range(mpre.size - 1, 0, -1):
mpre[i - 1] = np.maximum(mpre[i - 1], mpre[i])

# to calculate area under PR curve, look for points
# where X axis (recall) changes value
i = np.where(mrec[1:] != mrec[:-1])[0]

# and sum (\Delta recall) * prec
ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1])
return ap


def tensor2im(image_tensor, imtype=np.uint8, cent=1., factor=255./2.):
# def tensor2im(image_tensor, imtype=np.uint8, cent=1., factor=1.):
image_numpy = image_tensor[0].cpu().float().numpy()
image_numpy = (np.transpose(image_numpy, (1, 2, 0)) + cent) * factor
return image_numpy.astype(imtype)


def im2tensor(image, imtype=np.uint8, cent=1., factor=255./2.):
# def im2tensor(image, imtype=np.uint8, cent=1., factor=1.):
return torch.Tensor((image / factor - cent)
[:, :, :, np.newaxis].transpose((3, 2, 0, 1)))
Original file line number Diff line number Diff line change
@@ -0,0 +1,58 @@
import os
import torch
from torch.autograd import Variable
from pdb import set_trace as st
from IPython import embed

class BaseModel():
def __init__(self):
pass;

def name(self):
return 'BaseModel'

def initialize(self, use_gpu=True, gpu_ids=[0]):
self.use_gpu = use_gpu
self.gpu_ids = gpu_ids

def forward(self):
pass

def get_image_paths(self):
pass

def optimize_parameters(self):
pass

def get_current_visuals(self):
return self.input

def get_current_errors(self):
return {}

def save(self, label):
pass

# helper saving function that can be used by subclasses
def save_network(self, network, path, network_label, epoch_label):
save_filename = '%s_net_%s.pth' % (epoch_label, network_label)
save_path = os.path.join(path, save_filename)
torch.save(network.state_dict(), save_path)

# helper loading function that can be used by subclasses
def load_network(self, network, network_label, epoch_label):
save_filename = '%s_net_%s.pth' % (epoch_label, network_label)
save_path = os.path.join(self.save_dir, save_filename)
print('Loading network from %s'%save_path)
network.load_state_dict(torch.load(save_path))

def update_learning_rate():
pass

def get_image_paths(self):
return self.image_paths

def save_done(self, flag=False):
np.save(os.path.join(self.save_dir, 'done_flag'),flag)
np.savetxt(os.path.join(self.save_dir, 'done_flag'),[flag,],fmt='%i')

Loading

0 comments on commit 79ff7cc

Please sign in to comment.