Skip to content

kts/npc_gzip

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Code for Paper: “Low-Resource” Text Classification: A Parameter-Free Classification Method with Compressors

This paper is accepted to Findings of ACL2023.

Require

torch
torchdata
torchtext==0.11 (for dataset)
numpy
pathos (if need multiprocessing)
scikit-learn
tqdm
unidecode
datasets

Run

python main_text.py

By default, this will only use 100 test and training samples per class as a quick demo. They can be changed by --num_test, --num_train.

--compressor <gzip, lzma, bz2>
--dataset <AG_NEWS, SogouNews, DBpedia, YahooAnswers, 20News, Ohsumed_single, R8, R52, kinnews, kirnews, swahili, filipino> [Note that for small datasets like kinnews, default 100-shot is too big, need to set --num_test and --num_train.]
--num_train <INT>
--num_test <INT>
--data_dir <DIR> [This needs to be specified for R8, R52 and Ohsumed.]
--all_test [This will use the whole test dataset.]
--all_train
--record [This will record the distance matrix in order to save for the future use. It's helpful when you when to run on the whole dataset.]
--test_idx_start <INT>
--test_idx_end <INT> [These two args help us to run on a certain range of test set. Also helpful for calculating the distance matrix on the whole dataset.]
--para [This will use multiprocessing to accelerate.]
--output_dir <DIR> [The output directory to save information of tested indicies or distance matrix.]

Calculate Accuracy (Optional)

If we want to calculate accuracy from recorded distance file , use

python main_text.py --record --score --distance_fn <DISTANCE DIR> 

to calculate accuracy. Otherwise, the accuracy will be calculated automatically using the command in the last section.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%