forked from microsoft/onnxruntime
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[JS/Web] Add ConvTranspose implementation using MatMul (microsoft#17573)
### Description Add ConvTranspose implementation using MatMul to increase perf. ### Motivation and Context <!-- - Why is this change required? What problem does it solve? - If it fixes an open issue, please link to the issue here. -->
- Loading branch information
1 parent
6b7e2fc
commit a367f56
Showing
6 changed files
with
471 additions
and
19 deletions.
There are no files selected for viewing
243 changes: 243 additions & 0 deletions
243
js/web/lib/wasm/jsep/webgpu/ops/3rd-party/conv_backprop_mm_webgpu.ts
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,243 @@ | ||
/** | ||
* @license | ||
* Copyright 2021 Google LLC. All Rights Reserved. | ||
* Licensed under the Apache License, Version 2.0 (the "License"); | ||
* you may not use this file except in compliance with the License. | ||
* You may obtain a copy of the License at | ||
* | ||
* http://www.apache.org/licenses/LICENSE-2.0 | ||
* | ||
* Unless required by applicable law or agreed to in writing, software | ||
* distributed under the License is distributed on an "AS IS" BASIS, | ||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
* See the License for the specific language governing permissions and | ||
* limitations under the License. | ||
* ============================================================================= | ||
*/ | ||
|
||
// sampled from [@tensorflow/tfjs] tfjs-backend-webgpu/src/conv_backprop_mm_webgpu.ts | ||
// | ||
// modified to fit the needs of the project | ||
|
||
import {LOG_DEBUG} from '../../../log'; | ||
import {TensorView} from '../../../tensor-view'; | ||
import {ShapeUtil} from '../../../util'; | ||
import {GpuDataType, ProgramInfo, ProgramMetadata} from '../../types'; | ||
import {ConvTransposeAttributes} from '../conv-transpose'; | ||
|
||
import {Activation, activationFnSnippet, biasActivationSnippet, typeSnippet} from './activation_util'; | ||
import {utilFunctions} from './conv_util'; | ||
import {makeMatMulPackedSource, makeMatMulPackedVec4Source} from './matmul_packed_webgpu'; | ||
|
||
const conv2dTransposeCommonSnippet = | ||
(isChannelsLast: boolean, addBias = false, activation?: Activation, hasPreluActivationWeights = false, | ||
innerElementSize = 4): string => { | ||
const getWSnippet = (innerElementSize: number) => { | ||
switch (innerElementSize) { | ||
case 1: | ||
return 'return W[getIndexFromCoords4D(coord, wShape)];'; | ||
case 4: | ||
return ` | ||
let coord1 = vec4<i32>(coordX, coordY, col + 1, rowInner); | ||
let coord2 = vec4<i32>(coordX, coordY, col + 2, rowInner); | ||
let coord3 = vec4<i32>(coordX, coordY, col + 3, rowInner); | ||
let v0 = W[getIndexFromCoords4D(coord, wShape)]; | ||
let v1 = W[getIndexFromCoords4D(coord1, wShape)]; | ||
let v2 = W[getIndexFromCoords4D(coord2, wShape)]; | ||
let v3 = W[getIndexFromCoords4D(coord3, wShape)]; | ||
return vec4<f32>(v0, v1, v2, v3); | ||
`; | ||
default: | ||
throw new Error(`innerElementSize ${innerElementSize} is not supported.`); | ||
} | ||
}; | ||
const coordASnippet = isChannelsLast ? ` | ||
let coord = vec4<i32>(batch, iXR, iXC, xCh); | ||
` : | ||
` | ||
let coord = vec4<i32>(batch, xCh, iXR, iXC); | ||
`; | ||
|
||
const coordResSnippet = isChannelsLast ? ` | ||
let coords = vec4<i32>( | ||
batch, | ||
row / outWidth, | ||
row % outWidth, | ||
col); | ||
` : | ||
` | ||
let coords = vec4<i32>( | ||
batch, | ||
row, | ||
col / outWidth, | ||
col % outWidth); | ||
`; | ||
|
||
const xHeight = isChannelsLast ? 'outBackprop[1]' : 'outBackprop[2]'; | ||
const xWidth = isChannelsLast ? 'outBackprop[2]' : 'outBackprop[3]'; | ||
const row = isChannelsLast ? 'row' : 'col'; | ||
const col = isChannelsLast ? 'col' : 'row'; | ||
|
||
const readASnippet = ` | ||
let inChannels = ${isChannelsLast ? 'outBackprop[3]' : 'outBackprop[1]'}; | ||
let outWidth = ${isChannelsLast ? 'outShape[2]' : 'outShape[3]'}; | ||
let outRow = ${row} / outWidth; | ||
let outCol = ${row} % outWidth; | ||
let WRow = ${col} / (filterDims[1] * inChannels); | ||
let WCol = ${col} / inChannels % filterDims[1]; | ||
let xR = f32(outRow - pads[0] + dilation[0] * WRow) / f32(strides[0]); | ||
let xC = f32(outCol - pads[1] + dilation[1] * WCol) / f32(strides[1]); | ||
if (xR < 0.0 || xR >= f32(${xHeight}) || fract(xR) > 0.0) { | ||
return ${typeSnippet(innerElementSize)}(0.0); | ||
} | ||
if (xC < 0.0 || xC >= f32(${xWidth}) || fract(xC) > 0.0) { | ||
return ${typeSnippet(innerElementSize)}(0.0); | ||
} | ||
let iXR = i32(xR); | ||
let iXC = i32(xC); | ||
let xCh = ${col} % inChannels; | ||
${coordASnippet} | ||
return x[getIndexFromCoords4D(coord, xShape)/${innerElementSize}];`; | ||
|
||
const sampleA = isChannelsLast ? ` | ||
let col = colIn * ${innerElementSize}; | ||
if (row < dimAOuter && col < dimInner) { | ||
${readASnippet} | ||
} | ||
return ${typeSnippet(innerElementSize)}(0.0);` : | ||
` | ||
let col = colIn * ${innerElementSize}; | ||
if (row < dimInner && col < dimBOuter) { | ||
${readASnippet} | ||
} | ||
return ${typeSnippet(innerElementSize)}(0.0);`; | ||
|
||
const sampleW = ` | ||
let col = colIn * ${innerElementSize}; | ||
let inChannels = ${isChannelsLast ? 'outBackprop[3]' : 'outBackprop[1]'}; | ||
let coordX = filterDims.x - 1 - row / (filterDims[1] * inChannels); | ||
let coordY = filterDims.y - 1 - (row / inChannels) % filterDims[1]; | ||
if (${ | ||
isChannelsLast ? 'row < dimInner && col < dimBOuter' : | ||
'row < dimInner && col < dimAOuter'} && coordX >= 0 && coordY >= 0) { | ||
let rowInner = row % inChannels; | ||
let coord = vec4<i32>(coordX, coordY, col, rowInner); | ||
${getWSnippet(innerElementSize)} | ||
} | ||
return ${typeSnippet(innerElementSize)}(0.0); | ||
`; | ||
|
||
|
||
const userCode = ` | ||
${activationFnSnippet(activation, hasPreluActivationWeights, innerElementSize === 4, 4)} | ||
fn mm_readA(batch: i32, row : i32, colIn : i32) -> ${typeSnippet(innerElementSize)} { | ||
${isChannelsLast ? sampleA : sampleW} | ||
} | ||
fn mm_readB(batch: i32, row : i32, colIn : i32) -> ${typeSnippet(innerElementSize)} { | ||
${isChannelsLast ? sampleW : sampleA} | ||
} | ||
fn mm_write(batch: i32, row : i32, colIn : i32, valueInput : ${typeSnippet(innerElementSize)}) { | ||
let col = colIn * ${innerElementSize}; | ||
if (row < dimAOuter && col < dimBOuter) { | ||
var value = valueInput; | ||
let outWidth = ${isChannelsLast ? 'outShape[2]' : 'outShape[3]'}; | ||
${coordResSnippet} | ||
${biasActivationSnippet(addBias, activation)} | ||
result[getIndexFromCoords4D(coords, outShape)/${innerElementSize}] = value; | ||
} | ||
}`; | ||
return userCode; | ||
}; | ||
|
||
export const createConv2DTransposeMatMulProgramInfo = | ||
(inputs: readonly TensorView[], metadata: ProgramMetadata, attributes: ConvTransposeAttributes, | ||
outputShape: readonly number[], dimAOuter: number, dimBOuter: number, dimInner: number, hasBias: boolean, | ||
sequentialAccessByThreads: boolean): ProgramInfo => { | ||
const isChannelsLast = attributes.format === 'NHWC'; | ||
const inChannels = isChannelsLast ? inputs[0].dims[3] : inputs[0].dims[1]; | ||
const batchSize = outputShape[0]; | ||
const outWidth = isChannelsLast ? outputShape[2] : outputShape[3]; | ||
const outHeight = isChannelsLast ? outputShape[1] : outputShape[2]; | ||
const outChannels = isChannelsLast ? outputShape[3] : outputShape[1]; | ||
const isVec4 = | ||
isChannelsLast ? inChannels % 4 === 0 && outChannels % 4 === 0 : outWidth % 4 === 0 && outChannels % 4 === 0; | ||
|
||
// TODO: fine tune size | ||
const dispatchX = isChannelsLast ? outChannels : outWidth * outHeight; | ||
const dispatchY = isChannelsLast ? outWidth * outHeight : outChannels; | ||
const workGroupSize: [number, number, number] = isVec4 ? | ||
[8, 8, 1] : | ||
[(dispatchX <= 4 || dispatchY <= 4) ? 4 : 16, dispatchX > 4 && dispatchY <= 4 ? 4 : 16, 1]; | ||
const elementsPerThread = | ||
isVec4 ? [4, 4, 1] : [dispatchX <= 4 ? 1 : 4, dispatchX > 4 && dispatchY <= 4 ? 1 : 4, 1]; | ||
const dispatch = [ | ||
Math.ceil(dispatchX / workGroupSize[0] / elementsPerThread[0]), | ||
Math.ceil(dispatchY / workGroupSize[1] / elementsPerThread[1]), | ||
Math.ceil(batchSize / workGroupSize[2] / elementsPerThread[2]) | ||
]; | ||
|
||
LOG_DEBUG('verbose', () => `[conv_backprop_mm_webgpu] dispatch = ${dispatch}`); | ||
|
||
const innerElementSize = isVec4 ? 4 : 1; | ||
const tileInner = Math.max(workGroupSize[0] * innerElementSize, workGroupSize[1]); | ||
|
||
|
||
const declareInputs = [ | ||
`@group(0) @binding(0) var<storage, read> x: array<${isVec4 ? 'vec4<f32>' : 'f32'}>;`, | ||
'@group(0) @binding(1) var<storage, read> W: array<f32>;' | ||
]; | ||
let declareFunctions = ''; | ||
if (hasBias) { | ||
declareInputs.push(`@group(0) @binding(2) var<storage, read> bias: array<${isVec4 ? 'vec4<f32>' : 'f32'}>;`); | ||
declareFunctions += ` | ||
fn getBiasByOutputCoords(coords : vec4<i32>) -> ${isVec4 ? 'vec4<f32>' : 'f32'} { | ||
return bias[coords.${isChannelsLast ? 'w' : 'y'}${isVec4 ? '/ 4' : ''}]; | ||
}`; | ||
} | ||
return { | ||
...metadata, | ||
outputs: [{dims: outputShape, dataType: inputs[0].dataType, gpuDataType: GpuDataType.default}], | ||
dispatchGroup: () => ({x: dispatch[0], y: dispatch[1], z: dispatch[2]}), | ||
getShaderSource: () => ` | ||
${utilFunctions} | ||
${declareInputs.join('\n')} | ||
@group(0) @binding(${declareInputs.length}) var<storage, read_write> result: array<${ | ||
isVec4 ? 'vec4<f32>' : 'f32'}>; | ||
const outBackprop : vec4<i32> = vec4<i32>(${inputs[0].dims.join(',')}); | ||
const xShape : vec4<i32> = vec4<i32>(${inputs[0].dims.join(',')}); | ||
const wShape : vec4<i32> = vec4<i32>(${inputs[1].dims.join(',')}); | ||
const outShape : vec4<i32> = vec4<i32>(${outputShape.join(',')}); | ||
const outShapeStrides : vec3<i32> = vec3<i32>(${ShapeUtil.computeStrides(outputShape).slice(0, 3).join(',')}); | ||
const filterDims : vec2<i32> = vec2<i32>(${attributes.kernelShape[isChannelsLast ? 1 : 2]}, ${ | ||
attributes.kernelShape[isChannelsLast ? 2 : 3]}); | ||
const effectiveFilterDims : vec2<i32> = filterDims + vec2<i32>( | ||
${ | ||
attributes.dilations[0] <= 1 ? | ||
0 : | ||
(attributes.kernelShape[isChannelsLast ? 1 : 2] - 1) * (attributes.dilations[0] - 1)}, | ||
${ | ||
attributes.dilations[1] <= 1 ? | ||
0 : | ||
(attributes.kernelShape[isChannelsLast ? 2 : 3] - 1) * (attributes.dilations[1] - 1)}); | ||
const pads : vec2<i32> = vec2<i32>(i32(effectiveFilterDims[0]) - 1 - (${ | ||
attributes.pads[0] + attributes.pads[2]})/2, | ||
i32(effectiveFilterDims[1]) - 1 - (${ | ||
attributes.pads[1] + attributes.pads[3]})/2); | ||
const strides : vec2<i32> = vec2<i32>(${attributes.strides[0]}, ${attributes.strides[1]}); | ||
const dilation : vec2<i32> = vec2<i32>(${attributes.dilations[0]}, ${attributes.dilations[1]}); | ||
const dimAOuter : i32 = ${dimAOuter}; | ||
const dimBOuter : i32 = ${dimBOuter}; | ||
const dimInner : i32 = ${dimInner}; | ||
${declareFunctions} | ||
${conv2dTransposeCommonSnippet(isChannelsLast, hasBias, undefined, false, innerElementSize)} | ||
${ | ||
isVec4 ? | ||
makeMatMulPackedVec4Source(elementsPerThread, workGroupSize, undefined, !isChannelsLast, tileInner) : | ||
makeMatMulPackedSource( | ||
elementsPerThread, workGroupSize, undefined, !isChannelsLast, tileInner, false, undefined, | ||
sequentialAccessByThreads)}` | ||
}; | ||
}; |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,29 @@ | ||
// Copyright (c) Microsoft Corporation. All rights reserved. | ||
// Licensed under the MIT License. | ||
|
||
import {TensorView} from '../../tensor-view'; | ||
import {GpuDataType, ProgramInfoLoader, ProgramMetadata} from '../types'; | ||
|
||
import {createConv2DTransposeMatMulProgramInfo} from './3rd-party/conv_backprop_mm_webgpu'; | ||
import {ConvTransposeAttributes} from './conv-transpose'; | ||
|
||
|
||
const createConv2DTransposeMatMulProgramMetadata = (hasBias: boolean, cacheHint: string): ProgramMetadata => ({ | ||
name: 'Conv2DTransposeMatMul', | ||
inputTypes: hasBias ? [GpuDataType.default, GpuDataType.default, GpuDataType.default] : | ||
[GpuDataType.default, GpuDataType.default], | ||
cacheHint | ||
}); | ||
|
||
export const createConv2DTransposeMatMulProgramInfoLoader = | ||
(inputs: readonly TensorView[], attributes: ConvTransposeAttributes, outputShape: readonly number[], | ||
dimAOuter: number, dimBOuter: number, dimInner: number, hasBias: boolean, | ||
sequentialAccessByThreads: boolean): ProgramInfoLoader => { | ||
const metadata = createConv2DTransposeMatMulProgramMetadata(hasBias, attributes.cacheKey); | ||
return { | ||
...metadata, | ||
get: () => createConv2DTransposeMatMulProgramInfo( | ||
inputs, metadata, attributes, outputShape, dimAOuter, dimBOuter, dimInner, hasBias, | ||
sequentialAccessByThreads) | ||
}; | ||
}; |
Oops, something went wrong.