Skip to content

Commit

Permalink
Models for MPRA-DragoNN (#176)
Browse files Browse the repository at this point in the history
* Added SNPpet

* Added MPRA-DragoNN
  • Loading branch information
suragnair authored and Avsecz committed Apr 30, 2019
1 parent 47afb1b commit a45a118
Show file tree
Hide file tree
Showing 2 changed files with 100 additions and 0 deletions.
50 changes: 50 additions & 0 deletions MPRA-DragoNN/ConvModel/model.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,50 @@
defined_as: kipoi.model.KerasModel
args: # arguments of kipoi.model.KerasModel
arch:
url: https://github.com/kundajelab/mpra_minimal/raw/87197541b/kipoi/ConvModel/model.json
md5: 930692182c3fcbb4483115fa4ac386f8
weights:
url: https://github.com/kundajelab/mpra_minimal/raw/87197541b/kipoi/ConvModel/pretrained.hdf5
md5: 19fb17f943c3d6bcada8c5dc638092b4

default_dataloader:
defined_as: kipoiseq.dataloaders.SeqIntervalDl

default_args: # Optional arguments to the SeqIntervalDl dataloader
# See also https://kipoi.org/kipoiseq/dataloaders/#seqintervaldl
auto_resize_len: 145 # Automatically resize sequence intervals
alphabet_axis: 1
# dummy_axis: 2 # Add a dummy axis. Omit in order not to create dummy_axis.
alphabet: "ACGT" # Order of letters in 1-hot encoding
ignore_targets: False # if True, dont return any target variables

info: # General information about the model
authors:
- name: Rajiv Movva, Surag Nair
github: rmovva, suragnair
email: [email protected]
doc: Three-layer convolutional neural network for predicting Sharpr-MPRA activity of arbitrary 145bp sequences.
cite_as: https://doi.org/10.1101/393926 # preferably a doi url to the paper
trained_on: Sharpr-MPRA dataset. chr8 validation, chr18 test. other chromosomes train.
license: MIT # Software License - if not set defaults to MIT
# You can also specify the license in the LICENSE file

dependencies:
conda: # install via conda
- python=3.5
- h5py
# - soumith::pytorch # <channel>::<package> syntax
pip: # install via pip
- keras>=2.2.4
- tensorflow>=1.10

schema: # Model schema. The schema defintion is essential for kipoi plug-ins to work.
inputs: # input = single numpy array
shape: (145,4) # array shape of a single sample (omitting the batch dimension)
doc: "145bp one-hot encoded ACGT sequences (e.g. [1,0,0,0] = 'A')"
targets:
shape: (12,)
doc: "predicts 12 tasks: k562 minP replicate 1, k562 minP replicate 2, k562 minP pooled,
k562 sv40p replicate 1, k562 sv40p replicate 2, k562 sv40p pooled,
hepg2 minP replicate 1, hepg2 minP replicate 2, hepg2 minP pooled,
hepg2 sv40p replicate 1, hepg2 sv40p replicate 2, hepg2 sv40p pooled."
50 changes: 50 additions & 0 deletions MPRA-DragoNN/DeepFactorizedModel/model.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,50 @@
defined_as: kipoi.model.KerasModel
args: # arguments of kipoi.model.KerasModel
arch:
url: https://github.com/kundajelab/mpra_minimal/raw/87197541b/kipoi/DeepFactorizedModel/model.json
md5: 16434a997183d882312ec8e930bd0100
weights:
url: https://github.com/kundajelab/mpra_minimal/raw/87197541b/kipoi/DeepFactorizedModel/pretrained.hdf5
md5: a6c876a82779f44f3c645d5feb0143ae

default_dataloader:
defined_as: kipoiseq.dataloaders.SeqIntervalDl

default_args: # Optional arguments to the SeqIntervalDl dataloader
# See also https://kipoi.org/kipoiseq/dataloaders/#seqintervaldl
auto_resize_len: 145 # Automatically resize sequence intervals
alphabet_axis: 1
# dummy_axis: 2 # Add a dummy axis. Omit in order not to create dummy_axis.
alphabet: "ACGT" # Order of letters in 1-hot encoding
ignore_targets: False # if True, dont return any target variables

info: # General information about the model
authors:
- name: Rajiv Movva, Surag Nair
github: rmovva, suragnair
email: [email protected]
doc: Deep factorized convolutional neural network for predicting Sharpr-MPRA activity of arbitrary 145bp sequences. Architecture based on https://doi.org/10.1101/229385.
cite_as: https://doi.org/10.1101/393926 # preferably a doi url to the paper
trained_on: Sharpr-MPRA dataset. chr8 validation, chr18 test. other chromosomes train.
license: MIT # Software License - if not set defaults to MIT
# You can also specify the license in the LICENSE file

dependencies:
conda: # install via conda
- python=3.5
- h5py
# - soumith::pytorch # <channel>::<package> syntax
pip: # install via pip
- keras>=2.2.4
- tensorflow>=1.10

schema: # Model schema. The schema defintion is essential for kipoi plug-ins to work.
inputs: # input = single numpy array
shape: (145,4) # array shape of a single sample (omitting the batch dimension)
doc: "145bp one-hot encoded ACGT sequences (e.g. [1,0,0,0] = 'A')"
targets:
shape: (12,)
doc: "predicts 12 tasks: k562 minP replicate 1, k562 minP replicate 2, k562 minP pooled,
k562 sv40p replicate 1, k562 sv40p replicate 2, k562 sv40p pooled,
hepg2 minP replicate 1, hepg2 minP replicate 2, hepg2 minP pooled,
hepg2 sv40p replicate 1, hepg2 sv40p replicate 2, hepg2 sv40p pooled."

0 comments on commit a45a118

Please sign in to comment.