Skip to content

The final report of "Intelligent Informatics", Creative Informatics, the University of Tokyo.

Notifications You must be signed in to change notification settings

ketaro-m/line_trace_dqn

Repository files navigation

Line Trace DQN

Line trace robot simulation with reinforcement learning, Deep Q-Network.

The final report of "Intelligent Informatics", Creative Informatics, the University of Tokyo.

Requirements

  • Ubuntu 18.04
  • ROS Melodic
  • Python 3.6.x (must be installed on the system like /usr/bin/python3)

Installation

Clone packages.

$ mkdir -p ~/catkin_ws/src  
$ cd ~/catkin_ws/src  
$ wstool init .  
$ wstool set --git line_trace_dqn [email protected]:ketaro-m/line_trace_dqn.git -y  
$ wstool update  
$ wstool merge -t . line_trace_dqn/.rosinstall  
$ wstool update  

Build packages.

$ cd ..  
$ rosdep install -y -r --from-paths src --ignore-src  
$ source /opt/ros/${ROS_DISTRO}/setup.bash  
$ catkin build line_trace_dqn  
$ source ./devel/setup.bash

Usage

1. Launch Gazebo simulator

$ roslaunch line_trace_dqn turtlebot3_linetrace.launch  

(ex. Python sample scripts)

$ roslaunch line_trace_dqn test_rospy.launch script:=follower  

2. Train DQN

$ roslaunch line_trace_dqn result_graph.launch # realtime score/action plot  
$ # roslaunch line_trace_dqn turtlebot3_dqn_train.launch --ros-args # see the parameter descriptions  
$ roslaunch line_trace_dqn turtlebot3_dqn_train.launch lr:=0.1  

3. Plot learning results

$ rosrun line_trace_dqn log_plotter.py  

References

Gazebo setup

Gazebo Tips

Python3

Sample

OpenCV

DQN

About

The final report of "Intelligent Informatics", Creative Informatics, the University of Tokyo.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published